25.如图11,在直角坐标系中,点A(4,0)、B(3,4)、C(0,2)。
(1)、(2)很简单,忽略。(3)在y轴上是否存在一点P,使S△PAB=10,若存在,请求点P坐标。(4)将线段AB平移至线段MN(M与A对应),且点M在y轴正半轴上,使...
(1)、(2)很简单,忽略。
(3)在y轴上是否存在一点P,使S△PAB=10,若存在,请求点P坐标。
(4)将线段AB平移至线段MN(M与A对应),且点M在y轴正半轴上,使S△NAB=7.5,求点N的坐标。 展开
(3)在y轴上是否存在一点P,使S△PAB=10,若存在,请求点P坐标。
(4)将线段AB平移至线段MN(M与A对应),且点M在y轴正半轴上,使S△NAB=7.5,求点N的坐标。 展开
3个回答
展开全部
(3)
解:在y轴上存在一点P,使S△PAB=10
点P坐标为 (0,-- 4) 或 (0, 36),理由如下:
设直线AB的解析式为:y = kx + b
把A(4,0)、B(3,4)两点坐标代入得:
k = -- 4,b = 16
∴直线AB的解析式为:y = -- 4x + 16
由解析式易知直线AB交y轴于点D(0,16)
AB = √[(0 -- 4)平方 + (4 -- 3)平方] = √17
当P位于 D的下方时
做PE垂直AD于点E
由 S△PAB = 10,得:
(1/2)× AB × PE = 10
∴ PE =(10 × 2)/ √17 = 20 / √17
DP = PE × √17 = 20
则点P 坐标为 (0,-- 4)
点P关于点D的对称点为(0, 36)
∴ 另一个点P(0,36) 也满足题意。
综上, 在y轴上存在一点P,使S△PAB=10
点P坐标为 (0,-- 4) 或 (0, 36)。
(4)由题意,四边形NMAB 是平行四边形
则 平行四边形NMAB 的面积 = 2S△NAB = 2S△MAB
∴ S△MAB = S△NAB = 7.5
过M 作 MF ⊥ AB 与 F
由 S△MAB = 7.5,得:
(1/2)× AB × MF = 7.5
∴ (1/2)× (√17) × MF = 7.5
∴ MF = 15 / (√17)
∴ MD = MF × √17 = 15
∴ OM = OD -- MD
= 16 -- 15
= 1
∴ 点M 的坐标为 (0, 1)。
过点N 作 NH ⊥ y 轴 于 点H,
过点B 作 BQ ⊥ x 轴 于点Q,
由 Rt△MNH ≌ Rt△BAQ
∴ NH = AQ = 1,
MH = BQ = 4,
∴ OH = OM + MH = 1 + 4 = 5
即 点H 的纵坐标为 5,亦即点N的纵坐标为 5。
由NH = AQ = 1 知:点N的横坐标为 1。
∴ 使S△NAB=7.5 时的点N的坐标为(1, 5)。
解:在y轴上存在一点P,使S△PAB=10
点P坐标为 (0,-- 4) 或 (0, 36),理由如下:
设直线AB的解析式为:y = kx + b
把A(4,0)、B(3,4)两点坐标代入得:
k = -- 4,b = 16
∴直线AB的解析式为:y = -- 4x + 16
由解析式易知直线AB交y轴于点D(0,16)
AB = √[(0 -- 4)平方 + (4 -- 3)平方] = √17
当P位于 D的下方时
做PE垂直AD于点E
由 S△PAB = 10,得:
(1/2)× AB × PE = 10
∴ PE =(10 × 2)/ √17 = 20 / √17
DP = PE × √17 = 20
则点P 坐标为 (0,-- 4)
点P关于点D的对称点为(0, 36)
∴ 另一个点P(0,36) 也满足题意。
综上, 在y轴上存在一点P,使S△PAB=10
点P坐标为 (0,-- 4) 或 (0, 36)。
(4)由题意,四边形NMAB 是平行四边形
则 平行四边形NMAB 的面积 = 2S△NAB = 2S△MAB
∴ S△MAB = S△NAB = 7.5
过M 作 MF ⊥ AB 与 F
由 S△MAB = 7.5,得:
(1/2)× AB × MF = 7.5
∴ (1/2)× (√17) × MF = 7.5
∴ MF = 15 / (√17)
∴ MD = MF × √17 = 15
∴ OM = OD -- MD
= 16 -- 15
= 1
∴ 点M 的坐标为 (0, 1)。
过点N 作 NH ⊥ y 轴 于 点H,
过点B 作 BQ ⊥ x 轴 于点Q,
由 Rt△MNH ≌ Rt△BAQ
∴ NH = AQ = 1,
MH = BQ = 4,
∴ OH = OM + MH = 1 + 4 = 5
即 点H 的纵坐标为 5,亦即点N的纵坐标为 5。
由NH = AQ = 1 知:点N的横坐标为 1。
∴ 使S△NAB=7.5 时的点N的坐标为(1, 5)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询