函数y=cosx/(2cosx+1)的值域是
2个回答
展开全部
令a=cosx
则-1<=a<=1
y=a/(2a+1)
=(a+0.5-0.5)/(2a+1)
=(a+0.5)/(2a+1)-0.5/(2a+1)
=1/2-(1/2)/(2a+1)
-1<=a<=1
所以-1<=2a+1<=3
所以1/(2a+1)<=-1,1/(2a+1)>=1/3
则-(1/2)/(2a+1)>=1/2,-(1/2)/(2a+1)<=-1/6
则(1/2)-(1/2)/(2a+1)>=1,(1/2)-(1/2)/(2a+1)<=1/3
所以值域是(-∞,1/3]∪[1,+∞)
则-1<=a<=1
y=a/(2a+1)
=(a+0.5-0.5)/(2a+1)
=(a+0.5)/(2a+1)-0.5/(2a+1)
=1/2-(1/2)/(2a+1)
-1<=a<=1
所以-1<=2a+1<=3
所以1/(2a+1)<=-1,1/(2a+1)>=1/3
则-(1/2)/(2a+1)>=1/2,-(1/2)/(2a+1)<=-1/6
则(1/2)-(1/2)/(2a+1)>=1,(1/2)-(1/2)/(2a+1)<=1/3
所以值域是(-∞,1/3]∪[1,+∞)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询