如图,在△ABC中,∠A=α,△ABC的内角平分线或外角平分线交于点P,且∠P=β,试探求下列各图中α与β的关

良大耳我棵累4841
2012-03-27 · TA获得超过5.6万个赞
知道大有可为答主
回答量:3.1万
采纳率:0%
帮助的人:4074万
展开全部
(1)可以把∠A=α,作为已知,求∠P即可.根据三角形内角和定理以及外角的性质即可求解;
(2)(3)解法相同.解答:解:(1)β=90°+ 12α;(2)β= 12α;(3)β=90°- 12α.
下面选择(1)进行证明.
在图(1)中,根据三角形内角和定理可得:∠ABC+∠ACB=180°-∠A.
∵BP与CP是△ABC的角平分线,
∴∠PBC= 12∠ABC,∠PCB= 12∠ACB,
∴∠PCB+∠PCB= 12(∠ABC+∠ACB)=90°- 12α.
在△PBC中,∠BPC=180°-(∠PCB+∠PCB)=180°-(90°- 12α)=90°+ 12α.
∴β=90°+ 12α.点评:本题主要考查了三角形的内角和定理以及三角形的角平分线的定义.

最后一个:
∠P = 90-(1/2)∠A

过程

∠B外角 = ∠A +∠C

∠C外角 = ∠A+ ∠B

∠B外角+∠C外角 =∠ A +∠B+∠A+∠C = ∠A +180

又因为

∠P + (1/2) ∠B外角 + (1/2) ∠C外角 = 180

∠P + (1/2)(∠B外角 + ∠C外角)= 180

∠P + (1/2)(∠A +180)= 180

∠P + (1/2)∠A +90= 180

∠P = 180-90-(1/2)∠A

∠P = 90-(1/2)∠A
匿名用户
2011-04-06
展开全部
内角:∠P=1/2∠A+90度
外角:∠P=90度-1/2∠A
内外角:∠P=1/2∠A
内角证明:因为BP PC为角平分线
所以∠ABP+∠ACP=∠PBC+∠PCB
因为∠ABC+∠ACB=180-∠A
所以∠PBC+∠PCB=90-1/2∠A
所以∠P=180-90+∠A=90+1/2∠A
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式