若数列{an}满足a1+2a2+3a3+~~+nan=n(n+1)(2n+1),则an=
4个回答
展开全部
a1+2a2+3a3+~~+(n-1)a(n-1)+nan=n(n+1)(2n+1),
a1+2a2+3a3+~~+(n-1)a(n-1)=(n-1)(n-1+1)(2n-2+1)=(n-1)n(2n-1),(n>1)
相减 nan=n(n+1)(2n+1)-(n-1)n(2n-1)=n(2n^2+3n+1-2n^2+3n-1)=n*6n,
an=6n(n>1)
n=1,a1=1*2*3=6 符合
所以an=6n
a1+2a2+3a3+~~+(n-1)a(n-1)=(n-1)(n-1+1)(2n-2+1)=(n-1)n(2n-1),(n>1)
相减 nan=n(n+1)(2n+1)-(n-1)n(2n-1)=n(2n^2+3n+1-2n^2+3n-1)=n*6n,
an=6n(n>1)
n=1,a1=1*2*3=6 符合
所以an=6n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a1+2a2+3a3+~~+nan=n(n+1)(2n+1), 得 sn +(a2 + 2a3 +......+(n-1)an)=n(n+1)(2n+1)
a1+2a2+3a3+~~+(n-1)a(n-1)=(n-1)n(2n-1), 得 s(n-1) +(a2 + 2a3 +......+(n-2)a(n-1))=(n-1)n(2n-1),
所以 sn - s(n-1) +(n - 1)an =n(n+1)(2n+1) - (n-1)n(2n-1)
an+(n - 1)an =n(n+1)(2n+1) - (n-1)n(2n-1)
nan =n(n+1)(2n+1) - (n-1)n(2n-1)
an=(n+1)(2n+1) - (n-1)(2n-1)
a1+2a2+3a3+~~+(n-1)a(n-1)=(n-1)n(2n-1), 得 s(n-1) +(a2 + 2a3 +......+(n-2)a(n-1))=(n-1)n(2n-1),
所以 sn - s(n-1) +(n - 1)an =n(n+1)(2n+1) - (n-1)n(2n-1)
an+(n - 1)an =n(n+1)(2n+1) - (n-1)n(2n-1)
nan =n(n+1)(2n+1) - (n-1)n(2n-1)
an=(n+1)(2n+1) - (n-1)(2n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a1+2a2+3a3+........+nan=n(n+1)(2n+1)
a1+2a2+3a3+........+nan+(n+1)an+1=(n+1)(n+2)(2n+3)
(n+1)an+1=(n+1)(6n+6)
an=6n
a1+2a2+3a3+........+nan+(n+1)an+1=(n+1)(n+2)(2n+3)
(n+1)an+1=(n+1)(6n+6)
an=6n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询