如图,直线y=-x-1与抛物线y=ax^2+bx-4都经过点A(-1,0),C(3,-4)

求(1)动点P在线段AC上,过点P作x轴的垂线与抛物线相交于点E,求线段PE长度的最大值(2)当线段PE的长度取得最大值时,在抛物线上是否存在点Q,使三角形PCQ是以PC... 求(1)动点P在线段AC上,过点P作x轴的垂线与抛物线相交于点E,求线段PE长度的最大值
(2)当线段PE的长度取得最大值时,在抛物线上是否存在点Q,使三角形PCQ是以PC为直角边的直角三角形?若存在,请求出Q点的坐标;若不存在,请说明理由
展开
疯狂的jerry123
2011-04-08 · TA获得超过1503个赞
知道小有建树答主
回答量:382
采纳率:0%
帮助的人:115万
展开全部
(1)把A,C分别带入到抛物线中,解得a=1,b=-3,所以抛物线:y=x^2-3x-4,设P(x0,-x0-1),则E(x0,x0^2-3x0-4),则|PE|=|x0^2-3x0-4-(-x0-1)|=|(x0-1)^2-4|,由于点P在线段AC上,所以
-1<x0<4,所以线段PE的最大长度为4
(2)当线段PE的长度取得最大值时,P为(1,-2),假设存在抛物线上一点Q,使得三角形PCQ是以PC为直角边的直角三角形,则设Q(t,t^2-3t-4),PC为直角边,分以下两种情况:
第一种:当角QPC=90度时,利用两个垂直向量的积为0.可得t=2+根号5或t=2-根号5,此时,Q分别为(1+根号5,1+根号5)(1-根号5,1-根号5),显然这两点都不在抛物线上,故不成立
第二种:当角QCP=90度时,同第一种情况解出t=1或3,此时Q的坐标分别为(1,-6)(3,-4)即分别是E点和C点。经验证E点符合,所以满足题意的Q点的坐标为(1,-6)
陶永清
2011-04-08 · TA获得超过10.6万个赞
知道大有可为答主
回答量:1.5万
采纳率:66%
帮助的人:7857万
展开全部
解:
1)将A(-1,0),C(3,-4) 代人抛物线y=ax^2+bx-4中,得,
a-b-4=0,
9a+3b-4=-4,
解得,a=1,b=-3,
抛物线为y=x^2-3x-4
设P(x,-x-1),则E点的坐标为(x,x^2-3x-4),
所以PE=-x-1-(x^2-3x-4)=-x^2+2x+3=-(x-1)^2+4
当x=1时,PE有最大值4

2)因为直线PC:y=-x-1,与x轴夹角为135°,
若以PC为直角边,则过C的直线与x轴夹角为45°,
设该直线为y=x+b,
因为过C(3,-4)代人直线y=x+b,解得b=-7,
所以此直线解析式为:y=x-7
解方程组y=x-7,
y=x^2-3x-4,
x^2-3x-4=x-7,
x^2-4x+3=0,
(x-1)(x-3)=0,
x1=1,x2=3
当x1=1,y=-6,
当x2=3,y=-4,
其中(3,-4)就是C点
所以符合条件的Q有(1,-6)
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lz8892531
2011-04-14
知道答主
回答量:1
采纳率:0%
帮助的人:0
展开全部
解:
1)将A(-1,0),C(3,-4) 代人抛物线y=ax^2+bx-4中,得,
a-b-4=0,
9a+3b-4=-4,
解得,a=1,b=-3,
抛物线为y=x^2-3x-4
设P(x,-x-1),则E点的坐标为(x,x^2-3x-4),
所以PE=-x-1-(x^2-3x-4)=-x^2+2x+3=-(x-1)^2+4
当x=1时,PE有最大值4

2)因为直线PC:y=-x-1,与x轴夹角为135°,
若以PC为直角边,则过C的直线与x轴夹角为45°,
设该直线为y=x+b,
因为过C(3,-4)代人直线y=x+b,解得b=-7,
所以此直线解析式为:y=x-7
解方程组y=x-7,
y=x^2-3x-4,
x^2-3x-4=x-7,
x^2-4x+3=0,
(x-1)(x-3)=0,
x1=1,x2=3
当x1=1,y=-6,
当x2=3,y=-4,
其中(3,-4)就是C点
所以符合条件的Q有(1,-6
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
1226697006
2012-03-19
知道答主
回答量:5
采纳率:0%
帮助的人:8020
展开全部
第二题应该有三解……
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式