七年级下册期末试卷数学人教版
马上就要七年级数学期末考试了,没有目标就没有方向,每一个学习阶段都应该给自己树立一个目标。我整理了关于七年级下册期末试卷数学人教版,希望对大家有帮助!
七年级下册期末数学人教版试题
一、选择题(共10小题,每小题3分,满分30分)
1.下列图形中∠1和∠2是对顶角的是( )
A. B. C. D.
2.估计 的值在哪两个整数之间( )
A.77和79 B.6和7 C.7和8 D.8和9
3.若m是任意实数,则点M(m2+2,﹣2)在第( )象限.
A.一 B.二 C.三 D.四
4.线段AB是由线段PQ平移得到的,点P(﹣1,3)的对应点为A(4,7),则点Q(﹣3,1)的对应点B的坐标是( )
A.(2,5) B.(﹣6,﹣1) C.(﹣8,﹣3) D.(﹣2,﹣2)
5.在实数0、π、 、2+ 、3.12312312…、﹣ 、 、1.1010010001…中,无理数的个数有( )
A.3个 B.4个 C.5个 D.6个
6.如图,能判定EC∥AB的条件是( )
A.∠B=∠ACB B.∠A=∠ACE C.∠B=∠ACE D.∠A=∠ECD
7.若方程组 的解满足x+y=0,则a的取值是( )
A.a=﹣1 B.a=1 C.a=0 D.a不能确定
8.下列调查中,适合采用全面调查(普查)方式的是( )
A.一个城市某一天的空气质量
B.对某班40名同学体重情况的调查
C.对某类烟花爆竹燃放安全情况的调查
D.对端午期间市场上粽子质量情况的调查
9.关于x的不等式2x+a≤﹣3的解集如图所示,则a的取值是( )
A.0 B.﹣1 C.﹣2 D.﹣3
10.平面直角坐标系中,点A(﹣2,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为( )
A.6,(﹣3,5) B.10,(3,﹣5) C.1,(3,4) D.3,(3,2)
二、填空题(共6小题,每小题3分,满分18分)
11.已知 =18.044,那么± = .
12.已知a>3,不等式(3﹣a)x>a﹣3解集为 .
13.已知一个样本容量为60,在频数分布直方图中,各小长方形的高比为2:4:1:3,那么第二组的频数是 .
14.如图,将三角板的直角顶点放在直尺的一边上,若∠1=70°,则∠2的度数为 .
15.下列命题中,
(1)一个锐角的余角小于这个角;
(2)两条直线被第三条直线所截,内错角相等;
(3)a,b,c是直线,若a⊥b,b⊥c,则a⊥c;
(4)若a2+b2=0,则a,b都为0.
是假命题的有 .(请填序号)
16.如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2017的坐标是 .
三、解答题(共17分)
17.计算:(﹣1)2016+ ﹣3+ × .
18.解方程组: .
19.解不等式组 ,并求出它的整数解.
四、(共16分,20、21题各8分)
20.如图,AB∥CD,EF交AB于点G,交CD与点F,FH交AB于点H,∠AGE=70°,∠BHF=125°,FH平分∠EFD吗?请说明你的理由.
21.某次考试结束后,班主任老师和小强进行了对话:
老师:小强同学,你这次考试的语数英三科总分348分,在下次考试中,要使语数英三科总分达到382分,你有何计划?
小强:老师,我争取在下次考试中,语文成绩保持124分,英语成绩再多16分,数学成绩增加15%,则刚好达到382分.
请问:小强这次考试英语、数学成绩各是多少?
五、共19分,第22题8分,第23题11分
22.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:
(1)九年(1)班有 名学生;
(2)补全直方图;
(3)除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图;
(4)求该年级每天阅读时间不少于1小时的学生有多少人?
23.善于思考的小明在解方程组 时,采用了一种“整体代换”的解法:
解:将方程②变形:4x+10y+y=5,即2(2x+5y)+y=5③
把方程①带入③得:2×3+y=5,∴y=﹣1
把y=﹣1代入①得x=4,∴方程组的解为 .
请你解决以下问题:
(1)模仿小明的“整体代换”法解方程组 ;
(2)已知x,y满足方程组
①求x2+9y2的值;
②求x+3y的值.[参考公式(a+b)2=a2+2ab+b2].
2015-2016学年安徽省芜湖市南陵县七年级(下)期末数学试卷
参考答案与试题解析
七年级下册期末试卷数学人教版参考答案
一、选择题(共10小题,每小题3分,满分30分)
1.下列图形中∠1和∠2是对顶角的是( )
A. B. C. D.
【考点】对顶角、邻补角.
【分析】一个角的两边分别是另一个角的反向延伸线,这两个角是对顶角.依据定义即可判断.
【解答】解:互为对顶角的两个角:一个角的两边分别是另一个角的反向延伸线.满足条件的只有D.
故选D.
2.估计 的值在哪两个整数之间( )
A.77和79 B.6和7 C.7和8 D.8和9
【考点】估算无理数的大小.
【分析】首先对 进行估算,再确定 是在哪两个相邻的整数之间.
【解答】解:∵ < ,
∴8< <9,
∴ 的值在8和9之间,
故选:D.
3.若m是任意实数,则点M(m2+2,﹣2)在第( )象限.
A.一 B.二 C.三 D.四
【考点】点的坐标.
【分析】根据平方数非负数的性质判断出点M的横坐标是正数,再根据各象限内点的坐标特征解答.
【解答】解:∵m2≥0,
∴m2+2≥2,
∴点M(m2+2,﹣2)在第四象限.
故选D.
4.线段AB是由线段PQ平移得到的,点P(﹣1,3)的对应点为A(4,7),则点Q(﹣3,1)的对应点B的坐标是( )
A.(2,5) B.(﹣6,﹣1) C.(﹣8,﹣3) D.(﹣2,﹣2)
【考点】坐标与图形变化-平移.
【分析】先根据点P、A的坐标判断平移的方向与距离,再根据点Q的坐标计算出点B的坐标即可.
【解答】解:∵点P(﹣1,3)的对应点为A(4,7),
∴线段向右平移的距离为:4﹣(﹣1)=5,向上平移的距离为:7﹣3=4,
∴点Q(﹣3,1)的对应点B的横坐标为:﹣3+5=2,纵坐标为:1+4=5,
∴B(2,5).
故选(A)
5.在实数0、π、 、2+ 、3.12312312…、﹣ 、 、1.1010010001…中,无理数的个数有( )
A.3个 B.4个 C.5个 D.6个
【考点】无理数.
【分析】无理数的三种常见类型:①开方开不尽的数,②无限不循环小数,③含有π的数.
【解答】解:0是有理数;
π是无理数;
是一个分数,是有理数;
2+ 是一个无理数;
3.12312312…是一个无限循环小数,是有理数;
﹣ =﹣2是有理数;
是无理数;
1.1010010001…是一个无限不循环小数,是无理数.
故选:B.
6.如图,能判定EC∥AB的条件是( )
A.∠B=∠ACB B.∠A=∠ACE C.∠B=∠ACE D.∠A=∠ECD
【考点】平行线的判定.
【分析】直接利用平行线的判定定理判定即可求得答案.注意排除法在解选择题中的应用.
【解答】解:∵当∠B=∠ECD或∠A=∠ACE时,EC∥AB;
∴B正确,A,C,D错误.
故选B.
7.若方程组 的解满足x+y=0,则a的取值是( )
A.a=﹣1 B.a=1 C.a=0 D.a不能确定
【考点】二元一次方程组的解;二元一次方程的解.
【分析】方程组中两方程相加表示出x+y,根据x+y=0求出a的值即可.
【解答】解:方程组两方程相加得:4(x+y)=2+2a,
将x+y=0代入得:2+2a=0,
解得:a=﹣1.
故选:A.
8.下列调查中,适合采用全面调查(普查)方式的是( )
A.一个城市某一天的空气质量
B.对某班40名同学体重情况的调查
C.对某类烟花爆竹燃放安全情况的调查
D.对端午期间市场上粽子质量情况的调查
【考点】全面调查与抽样调查.
【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【解答】解:A、调查一个城市某一天的空气质量,应该用抽样调查,
B、对某班40名同学体重情况的调查,应该用全面调查,
C、对某类烟花爆竹燃放安全情况的调查,应该用抽样调查,
D、对端午期间市场上粽子质量情况的调查,应该用抽样调查;
故选:B.
9.关于x的不等式2x+a≤﹣3的解集如图所示,则a的取值是( )
A.0 B.﹣1 C.﹣2 D.﹣3
【考点】解一元一次不等式;在数轴上表示不等式的解集.
【分析】将a看作常数求得该不等式解集,再由不等式解集在数轴上的表示可得关于a的方程,解方程即可得a的值.
【解答】解:移项,得:2x≤﹣3﹣a,
系数化为1,得:x≤ ,
由不等式可知该不等式的解集为x≤﹣1,
∴ =﹣1,
解得:a=﹣1,
故选:B.
10.平面直角坐标系中,点A(﹣2,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为( )
A.6,(﹣3,5) B.10,(3,﹣5) C.1,(3,4) D.3,(3,2)
【考点】坐标与图形性质.
【分析】分析:由AC∥x轴,A(﹣2,2),根据坐标的定义可求得y值,根据线段BC最小,确定BC⊥AC,垂足为点C,进一步求得BC的最小值和点C的坐标.
【解答】解:依题意可得
∵AC∥x,
∴y=2,
根据垂线段最短,当BC⊥AC于点C时,
点B到AC的距离最短,即
BC的最小值=5﹣2=3
此时点C的坐标为(3,2)
故选:D
二、填空题(共6小题,每小题3分,满分18分)
11.已知 =18.044,那么± = ±1.8044 .
【考点】平方根;算术平方根.
【分析】根据算术平方根的意义,被开方数的小数点每移动两位,其结果的小数点移动一位,据此判断即可.
【解答】解:∵ =18.044,
∴ =1.8044,
即± =±1.8044.
故答案为:±1.8044
12.已知a>3,不等式(3﹣a)x>a﹣3解集为 x<﹣1 .
【考点】解一元一次不等式.
【分析】首先判断出3﹣a<0,然后根据不等式的性质求出不等式的解集.
【解答】解:∵a>3,
∴3﹣a<0,
∴不等式(3﹣a)x>a﹣3解集为x<﹣1,
故答案为x<﹣1.
13.已知一个样本容量为60,在频数分布直方图中,各小长方形的高比为2:4:1:3,那么第二组的频数是 24 .
【考点】频数(率)分布直方图;总体、个体、样本、样本容量.
【分析】根据各小长方形的高比为2:4:1:3,得频数之比为2:4:1:3,由此即可解决问题.
【解答】解:∵样本容量为60,各小长方形的高比为2:4:1:3,
∴那么第二组的频数是60× =24,
故答案为24.
14.如图,将三角板的直角顶点放在直尺的一边上,若∠1=70°,则∠2的度数为 20° .
【考点】平行线的性质.
【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据平角等于180°列式计算即可得解.
【解答】解:∵直尺对边平行,
∴∠3=∠1=70°,
∴∠2=180°﹣70°﹣90°=20°.
故答案为:20°.
15.下列命题中,
(1)一个锐角的余角小于这个角;
(2)两条直线被第三条直线所截,内错角相等;
(3)a,b,c是直线,若a⊥b,b⊥c,则a⊥c;
(4)若a2+b2=0,则a,b都为0.
是假命题的有 (1)(3) .(请填序号)
【考点】命题与定理.
【分析】利于锐角的定义、平行线的性质、垂直的定义等知识分别判断后即可确定正确的选项.
【解答】解:(1)一个锐角的余角小于这个角,错误,是假命题;
(2)两条直线被第三条直线所截,内错角相等,正确,是真命题;
(3)a,b,c是直线,若a⊥b,b⊥c,则a∥c,故错误,是假命题;
(4)若a2+b2=0,则a,b都为0,正确,为真命题,
故答案为(1)(3).
16.如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2017的坐标是 (﹣505,﹣505) .
【考点】规律型:点的坐标.
【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1,纵坐标依次加﹣1,在第四象限的点的横坐标依次加1,纵坐标依次加﹣1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A2017的坐标.
【解答】解:易得4的整数倍的各点如A4,A8,A12等点在第二象限,
∵2017÷4=504…1;
∴A2017的坐标在第三象限,
横坐标为﹣|÷4+1|=﹣505;纵坐标为﹣505,
∴点A2017的坐标是(﹣505,﹣505).
故答案为:(﹣505,﹣505).
三、解答题(共17分)
17.计算:(﹣1)2016+ ﹣3+ × .
【考点】实数的运算.
【分析】先根据数的乘方与开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可.
【解答】解:原式=1+2﹣3+1
=3﹣3+1
=1.
18.解方程组: .
【考点】解二元一次方程组.
【分析】方程组利用加减消元法求出解即可.
【解答】解:①+②×3得:5x=40,即x=8,
把x=8代入②得:y=2,
则方程组的解为 .
19.解不等式组 ,并求出它的整数解.
【考点】一元一次不等式组的整数解;解一元一次不等式组.
【分析】分别求出各不等式的解集,再求出其公共解集,在其公共解集范围内找出其整数解即可.
【解答】解:由①得,x>﹣2,由②得,x≤2,
故不等式组的取值范围是﹣2<x≤2,它的整数解为:﹣1,0,1,2. p=""> </x≤2,它的整数解为:﹣1,0,1,2.>
四、(共16分,20、21题各8分)
20.如图,AB∥CD,EF交AB于点G,交CD与点F,FH交AB于点H,∠AGE=70°,∠BHF=125°,FH平分∠EFD吗?请说明你的理由.
【考点】平行线的性质.
【分析】由平行线的性质可找出相等和互补的角,根据角的计算找出∠EFD=2∠DFH=110°,从而得出FH平分∠EFD的结论.
【解答】解:FH平分∠EFD,理由如下:
∵AB∥CD,
∴∠CFE=∠AGE,∠BHF+∠DFH=180°,
∵∠AGE=70°,∠BHF=125°,
∴∠CFE=70°,∠DFH=55°,
∵∠EFD=180°﹣∠CFE=110°,
∴∠EFD=2∠DFH=110°.
∴FH平分∠EFD.
21.某次考试结束后,班主任老师和小强进行了对话:
老师:小强同学,你这次考试的语数英三科总分348分,在下次考试中,要使语数英三科总分达到382分,你有何计划?
小强:老师,我争取在下次考试中,语文成绩保持124分,英语成绩再多16分,数学成绩增加15%,则刚好达到382分.
请问:小强这次考试英语、数学成绩各是多少?
【考点】二元一次方程组的应用.
【分析】设小强的英语成绩为x分,数学成绩为y分,等量关系为:语文成绩+数学成绩+英语成绩=348,语文成绩+英语成绩+16+数学成绩×(1+15%)=382,列出方程组,求解即可
【解答】解:设小强的英语成绩为x分,数学成绩为y分,
由题意得, ,
解得:
答:小强这次考试英语成绩为104分,数学成绩为120分.
五、共19分,第22题8分,第23题11分
22.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:
(1)九年(1)班有 50 名学生;
(2)补全直方图;
(3)除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图;
(4)求该年级每天阅读时间不少于1小时的学生有多少人?
【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.
【分析】(1)利用条形统计图与扇形统计图中0~0.5小时的人数以及所占比例进而得出该班的人数;
(2)利用班级人数进而得出0.5~1小时的人数,进而得出答案;
(3)利用九年级其他班级每天阅读时间在1~1.5小时的学生有165人,求出1~1.5小时在扇形统计图中所占比例,进而得出0.5~1小时在扇形统计图中所占比例;
(4)利用扇形统计图得出该年级每天阅读时间不少于1小时的人数,进而得出答案.
【解答】解:(1)由题意可得:4÷8%=50(人);
故答案为:50;
(2)由(1)得:0.5~1小时的为:50﹣4﹣18﹣8=20(人),
如图所示:
;
(3)∵除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,
∴1~1.5小时在扇形统计图中所占比例为:165÷×100%=30%,
故0.5~1小时在扇形统计图中所占比例为:1﹣30%﹣10%﹣12%=48%,
如图所示:
;
(4)该年级每天阅读时间不少于1小时的学生有:×(30%+10%)+18+8=246(人).
23.善于思考的小明在解方程组 时,采用了一种“整体代换”的解法:
解:将方程②变形:4x+10y+y=5,即2(2x+5y)+y=5③
把方程①带入③得:2×3+y=5,∴y=﹣1
把y=﹣1代入①得x=4,∴方程组的解为 .
请你解决以下问题:
(1)模仿小明的“整体代换”法解方程组 ;
(2)已知x,y满足方程组
①求x2+9y2的值;
②求x+3y的值.[参考公式(a+b)2=a2+2ab+b2].
【考点】高次方程;二元一次方程组的解.
【分析】分析:(1)把②变形为6x﹣3y+y=6,整体代入,先求出y;
【解答】解:(1)
由②得:6x﹣3y+y=6,
3(2x﹣y)+y=6③,
把①代入③得:3×1+y=6,
解得:y=3,
把y=3代入①得:2x﹣3=1,
解得:x=2,
所以原方程组的解为 ;
(2)①
①×2+②,得7x2+63y2=126,
等式的两边都除以7,得x2+9y2=18.
②.①×3﹣②×2,得﹣7xy=﹣21,
∴xy=3,6xy=18
∵x2+9y2=18,
∴x2+6xy+9y2=18+18,
∴(x+3y)2=36,
∴x+3y=±6.