不能相似对角化的条件

 我来答
新科技17
2022-10-27 · TA获得超过5913个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:75.6万
展开全部
首先你要知道矩阵相似具有传递性,然后利用反证法:假设这两个矩阵相似,而其中一个可相似对角化,那么根据传递性,另一个矩阵必然相似于同一个对角矩阵,即必然可对角化,与条件矛盾,故不相似

n阶方阵可进行对角化的充分必要条件是:

1.n阶方阵存在n个线性无关的特征向量

推论:如果这个n阶方阵有n个不同的特征值,那么矩阵必然存在相似矩阵

2.如果阶n方阵存在重复的特征值,每个特征值的线性无关的特征向量的个数恰好等于该特征值的重

复次数

现在从矩阵对角化的过程中,来说说这个条件是怎么来的.

在矩阵的特征问题中,特征向量有一个很好的性质,即aa=λa.

假设一种特殊的情形,a有n个不同的特征值λi,即aai=λi*ai.令矩阵p=[a1

a2

...

an]

这样以来ap=a*[a1

a2

...

an]=[a*a1

a*a2

...

a*an]=[λ1*a1

λ2*a2

...

λn*an]=p*b,其中b是对角阵.

b=

λ1

0

0

...

0

λ2

0

...

...

...

...

...

0

0

0

λn

由于不同特征值对应的特征向量是线性无关的,那么p是可逆矩阵,将上面等式换一种描述就是

a=p*b*p-1

,这也就是a相似与对角阵b定义了.

在这个过程中,a要能对角化有两点很重要:

p是怎么构成的?p由n个线性无关的向量组成,并且向量来自a的特征向量空间.

p要满足可逆.什么情况下p可逆?

矩阵可对角化的条件,其实就是在问什么情况下p可逆?

如果a由n个不同的特征值,1个特征值-对应1个特征向量,那么就很容易找到n个线性无关的特征向量,让他们组成p;

但是如果a有某个λ是个重根呢?比如λ=3,是个3重根.我们

知道对应的特征方程(3i-a)x=0不一定有3个线性无关的解.如果λ=3找不到3个线性无关的解,那么a就不能对角化了,这是因为能让a对角化的p矩阵不存在.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式