什么是不定积分?
积分变量只在积分中起作用,积分做完后就不存在了,且积分变量可以随便换字母。
给定一个函数f(x),如果存在函数F(x),在区间(a,b)上有F'(x)=f(x)成立,就说F(x)是f(x)在区间(a,b)上的一个原函数。
由于[F(x)+C]'=F'(x),所以f(x)的原函数如果存在,就有无穷多个,而且它们之间最多相差一个常数,所以f(x)的全体原函数表示成F(x)+C。
f(x)的全体原函数称为f(x)的不定积分,记作∫f(x)dx,其中∫称为积分号,它来自定积分中的积分号,是一个拉长了的字母s。
扩展资料:
如果一个函数的积分存在,并且有限,就说这个函数是可积的。一般来说,被积函数不一定只有一个变量,积分域也可以是不同维度的空间,甚至是没有直观几何意义的抽象空间。
在定义某些特殊的函数:在某些积分的定义下这些函数不可积分,但在另一些定义之下它们的积分存在。然而有时也会因为教学的原因造成定义上的差别。最常见的积分定义是黎曼积分和勒贝格积分。
函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。
对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。如果两个函数几乎处处相同,那么它们的积分相同。
参考资料来源:百度百科——积分
例如计算不定积分∫x²3√1-xdx
解:原式=3∫x²√1-x
令√1-x=t
x=1-t²
dx=-2tdt
原式=3∫(1-t²)²t(-2t)dt
=3∫(-2t²+4t^4-2t^6)dt
=-6∫t²dt+12∫t^4dt-6∫t^6dt
=-2t^3+12/5t^5-6/7t^7+c
=-2√(1-x)^3+12/5√(1-x)^5-6/7√(1-x)^7+c。
例如本题不定积分计算过程如下:
∫(1-3x)^6dx
=(-1/3)∫(1-3x)^6d(1-3x)
=-1/3*(1-3x)^7*(1/7)+C
=-1/21*(1-3x)^7+C。
例如∫(sinx)^4dx
=∫[(1/2)(1-cos2x]^2dx
=(1/4)∫[1-2cos2x+(cos2x)^2]dx
=(1/4)∫[1-2cos2x+(1/2)(1+cos4x)]dx
=(3/8)∫dx-(1/2)∫cos2xdx+(1/8)∫cos4xdx
=(3/8)∫dx-(1/4)∫cos2xd2x+(1/32)∫cos4xd4x
=(3/8)x-(1/4)sin2x+(1/32)sin4x+C。
例如∫cscxdx
=∫1/sinxdx
=∫1/[2sin(x/2)cos(x/2)]dx,两倍角公式
=∫1/[sin(x/2)cos(x/2)]d(x/2)
=∫1/tan(x/2)*sec²(x/2)d(x/2)
=∫1/tan(x/2)d[tan(x/2)],注∫sec²(x/2)d(x/2)=tan(x/2)+C
=ln|tan(x/2)|+C。
例如不定积分∫1/(2+ cosx)计算
设t=tan(x/2)
则cosx=[cos²(x/2)-sin²(x/2)]/[cos²(x/2)+sin²(x/2)]
=[1-tan²(x/2)]/[1+tan²(x/2)]
=(1-t²)/(1+t²)
dx=d(2arctant)=2dt/(1+t²)
故:∫1/(2+cosx)dx=∫1/[2+(1-t²)/(1+t²)]*[2dt/(1+t²)]
=∫2dt/(3+t²)
=2/√3∫d(t/√3)/[1+(t/√3)²]
=2/√3arctan(t/√3)+C
再例如∫lntanx/(sinxcosx)dx
分子分母同除以cos²x
=∫sec²x*lntanx/tanxdx
=∫lntanx/tanx d(tanx)
=∫lntanxd(lntanx)
=(1/2)ln²(tanx)+C。
换元法计算不定积分
例如∫ √(x²+1) dx
令x=tanu,则√(x²+1)=secu,dx=sec²udu。
∫sec³udu
=∫ secudtanu
=secutanu - ∫ tan²usecudu
=secutanu - ∫ (sec²u-1)secudu
=secutanu - ∫ sec³udu + ∫ secudu
=secutanu - ∫ sec³udu + ln|secu+tanu|
将- ∫ sec³udu移支等式左边与左边合并后除以系数得:
∫sec³udu=(1/2)secutanu + (1/2)ln|secu+tanu| + C。
所以:
∫ √(x²+1) dx=(1/2)√(x²+1)*x+ (1/2)ln|√(x²+1)+x| + C。
不定积分概念
设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。
其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。