某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果售价不超过80元,每件商品的售价每上涨
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果售价不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,售价超过80元,若再涨价,则每涨1元每...
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果售价不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,售价超过80元,若再涨价,则每涨1元每月少卖3件,设每件商品的售价为x元(x为正整数),每个月的销售量为y件。
求y与x的函数关系式,并直接写出x的取值范围; 展开
求y与x的函数关系式,并直接写出x的取值范围; 展开
8个回答
展开全部
解:(1)由题意得:y=(210-10x)(50+x-40)
=-10x2+110x+2100(0<x≤15且x为整数);
(2)由(1)中的y与x的解析式配方得:y=-10(x-5.5)2+2402.5.
∵a=-10<0,∴当x=5.5时,y有最大值2402.5.
∵0<x≤15,且x为整数,
当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元)
∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.
(3)当y=2200时,-10x2+110x+2100=2200,解得:x1=1,x2=10.
∴当x=1时,50+x=51,当x=10时,50+x=60.
∴当售价定为每件51或60元,每个月的利润为2200元.
当售价不低于51或60元,每个月的利润为2200元.
当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).
=-10x2+110x+2100(0<x≤15且x为整数);
(2)由(1)中的y与x的解析式配方得:y=-10(x-5.5)2+2402.5.
∵a=-10<0,∴当x=5.5时,y有最大值2402.5.
∵0<x≤15,且x为整数,
当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元)
∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.
(3)当y=2200时,-10x2+110x+2100=2200,解得:x1=1,x2=10.
∴当x=1时,50+x=51,当x=10时,50+x=60.
∴当售价定为每件51或60元,每个月的利润为2200元.
当售价不低于51或60元,每个月的利润为2200元.
当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y = 210 - (x - 50) x取值范围大于等于50 ,小于等于80
y = 180 - (x - 80)*3 x取值范围大于80
y = 180 - (x - 80)*3 x取值范围大于80
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)y=(210-10x)(50+x-40) = -10x^2+110x+2100 =-10(x-5.5)^2+2402.5 (0≤x≤15)
(2)∵X为正整数 ∴最大利润代入X=5(或者6),y=2400
(3)根据题意,得(210-10x)(10+x)=2200.
整理,得x2-11x+10=0,解这个方程,得x1=1,x2=10
∴当x=1时,50+x=51,当x=10时,50+x=60.
答:当每件商品的售价定为51元或60元时,每个月的利润恰为2200元
(2)∵X为正整数 ∴最大利润代入X=5(或者6),y=2400
(3)根据题意,得(210-10x)(10+x)=2200.
整理,得x2-11x+10=0,解这个方程,得x1=1,x2=10
∴当x=1时,50+x=51,当x=10时,50+x=60.
答:当每件商品的售价定为51元或60元时,每个月的利润恰为2200元
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
当40<X≤80时,Y=250-X
当X<80≤150时Y=450-3X
当X<80≤150时Y=450-3X
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询