实数集和有理数集的区别是什么?

 我来答
帐号已注销
2022-11-02 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.3万
展开全部

R是实数集,Q是有理数集,R\Q表示有理数集在实数集中的余集,也就是实数集中去掉所有有理数后剩下的元素组成的集合,也就是无理数集。

总而言之一句话,R\Q表示无理数集。

实数集通俗地认为,通常包含所有有理数和无理数的集合就是实数集,通常用大写字母R表示。18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。

有理数集,即由所有有理数所构成的集合,用黑体字母Q表示。有理数集是实数集的子集。有理数集是一个无穷集,不存在最大值或最小值。


扩展资料:

有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):

1、加法的交换律:【a+b=b+a】

2、加法的结合律:【a+(b+c)=(a+b)+c】

3、存在加法的单位元0,使【0+a=a+0=a】

4、对任意有理数a,存在一个加法逆元,记作-a,使【a+(-a)=(-a)+a=0】

5、乘法的交换律:【ab=ba】

6、乘法的结合律;【a·(b·c)=(a·b)·c】

7、乘法的分配律:【a(b+c)=ab+ac】

8、存在乘法的单位元1,使得对任意有理数a,有【1×a=a×1=a】

9、对于不为0的有理数a,存在乘法逆元1/a,使【1/a×a=a×1/a=1】

【0a=0】说明:一个数乘0还等于0。

任何一个非空有上界的集合(包含于R)必有上确界。

设A、B是两个包含于R的集合,且对任何x属于A,y属于B,都有x<y,那么必存在c属于R,使得对任何x属于A,y属于B,都有x<c<y。

符合以上四组公理的任何一个集合都叫做实数集,实数集的元素称为实数。

参考资料:百度百科---有理数集

参考资料:百度百科---实数集

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式