27.设n阶矩阵A满足A2=A,证明E-2A可逆,且(E-2A)-1=E-2A.
1个回答
展开全部
要证明E-2A可逆
我们可以假设其可逆,并设其逆为aE+bA
则(E-2A)(aE+bA)=E
那么aE+(b-2a)A-2bA^2=E
又A^2=A
那么(a-1)E-(b+2a)A=0
所以a-1=0,b+2a=0
所以a=1,b=-2
故E-2A可逆,且其逆是(E-2A)^-1=E-2A
我们可以假设其可逆,并设其逆为aE+bA
则(E-2A)(aE+bA)=E
那么aE+(b-2a)A-2bA^2=E
又A^2=A
那么(a-1)E-(b+2a)A=0
所以a-1=0,b+2a=0
所以a=1,b=-2
故E-2A可逆,且其逆是(E-2A)^-1=E-2A
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-08-05 广告
2024-08-05 广告
作为富港检测技术(东莞)有限公司的工作人员,关于ISTA 1A、2A及3A的区别及测试项目简述如下:ISTA 1A是非模拟集中性能试验,主要进行固定位移振动和冲击测试,针对不超过68kg的包装件。ISTA 2A则在此基础上增加了部分模拟性能...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询