曲面法向量方向余弦怎么算

 我来答
帐号已注销
2022-10-28 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

曲面法向量方向余弦前两个cosA与cosB的正负号与第三个cosr相反。

曲面Z=x^2+y^2的法向量为n=(-2x, -2y, 1)

那么曲面在三个坐标平面上的投影满足

dydz:dzdx:dxdy=(-2x):(-2y):1

所以,dydz= -2xdxdy,dzdx= -2ydxdy

扩展资料:

平面面积(Δσ)是曲面面积(ΔS)在xOy面下的投影

曲面积分中有与不同面对应的三个方向余弦。

对于yoz面,dydz = cosα dS

对于zox面,dzdx = cosβ dS

对于xoy面,dxdy = cosγ dS

其中dydz、dzdx、dxdy分别是dS在三个不同的面下的面积投影区域

考虑在xoy面上,γ是曲面dS在某一点的法向量与z轴之间形成的夹角

参考资料来源:百度百科-曲面积分

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式