向量组的秩与零向量有什么关系?
2个回答
展开全部
算出a、b之后,可以把A化简得到以下结果:
这里找极大线性无关组,可以采用画阶梯的方法,在每个台阶上上找一个向量,最后组成的向量组就是极大线性无关组。这里第一个台阶上找一个,只有α1;第二个台阶上找一个,α2、α3、α4三个里面任意找一个均可。所以最后极大线性无关组可以是:α1,α2,或α1,α3,或α1,α4。
含义:
因为线性无关的向量组就是它自身的极大线性无关组,所以一向量组线性无关的充分必要条件为它的秩与它所含向量的个数相同。每一向量组都与它的极大线性无关组等价。由等价的传递性可知,任意两个等价向量组的极大线性无关组也等价。所以,等价的向量组必有相同的秩。
含有非零向量的向量组一定有极大线性无关组,且任一个无关的部分向量组都能扩充成一个极大线性无关组。全部由零向量组成的向量组没有极大线性无关组,规定这样的向量组的秩为零。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询