若n阶矩阵满足A^2-3A-7E=0,试证A+E可逆,并求(A+E)^-1 我来答 1个回答 #热议# 什么是淋病?哪些行为会感染淋病? 机器1718 2022-09-06 · TA获得超过6832个赞 知道小有建树答主 回答量:2805 采纳率:99% 帮助的人:160万 我也去答题访问个人页 关注 展开全部 设B = A+E,那么A = B-E 所以(B-E)^2-3(B-E)-7E=0,化简得到B^2-5B-3E=0 也就是B(B-5E) = 3E 所以A+E=B可逆,其逆矩阵是B^-1=(B-5E)/3 = (A-4E)/3 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2022-07-01 若n阶矩阵满足A^2+2A-4E=0,试证A+E可逆,并求(A+E)^-1 2022-09-06 若n阶矩阵满足A^2-2A-4E=0,试证A+E可逆,并求(A+E)^-1 2022-11-24 设n阶矩阵A满足A^2+2A–3E=0,证明A+4E可逆,并求它们的逆. 2022-10-25 设n阶矩阵A满足A2+3A-2E=0.证明A可逆,并且求A的逆矩阵. 2022-05-27 已知n阶矩阵A满足 A^2(A-2E)=3A-11E,证明A+2E可逆,并求(A+2E)^-1 2022-11-02 设n阶矩阵A满足A2+3A-2E=0.证明A可逆,并且求A的逆矩阵.? 2022-08-24 已知N阶可逆矩阵A满足2A(A-E)=A^3,求(E-A)^(-1) 2022-09-11 27.设n阶矩阵A满足A2=A,证明E-2A可逆,且(E-2A)-1=E-2A. 1 为你推荐: