x,y,z∈(0,1),且x+y+z=2,求证1<xy+yz+zx≤4/3

ybszgsq
2011-04-10 · TA获得超过9185个赞
知道小有建树答主
回答量:884
采纳率:100%
帮助的人:1001万
展开全部
先证右边。
易知任意实数x,y,z都有x²+y²+z²≥xy+yz+zx。
(x+y+z)²=x²+y²+z²+2(xy+yz+zx)≥3(xy+yz+zx)
∴xy+yz+zx≤(x+y+z)²/3=4/3。
再证左边。
xy+yz+zx
=xy+(x+y)(2-x-y)
=-x²+2x-xy+2y-y²
=-(1-x)²+y(1-x)+y-y²+1
=(1-x)(x+y-1)+y(1-y)+1
由已知z=2-x-y∈(0,1),得x+y-1>0,1-x>0,1-y>0,y>0,于是xy+yz+zx>1。
命题得证。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式