已知f(X)=1/3x^2+ax^2-bx在区间[-1,2]上是单调递减函数,求a+b的最小值

良驹绝影
2011-04-10 · TA获得超过13.6万个赞
知道大有可为答主
回答量:2.8万
采纳率:80%
帮助的人:1.3亿
展开全部
f'(x)=x²+2ax-b,则f'(x)在区间[-1,2]上满足:①f'(-1)=1-2a-b≤0;②f'(2)=4+4a-b≤0。这样你的问题就是求目标函数z=a+b在区域上的最值,这是个线性规划问题。解决这个问题,你可以的。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式