高中数学:设函数f(x)=(1+x)^2-In(1+x)^2,若关于的x的方程f(x)=x^2+x+a在[0,2]上恰有两个相异的实根,求实
高中数学:设函数f(x)=(1+x)^2-In(1+x)^2,若关于的x的方程f(x)=x^2+x+a在[0,2]上恰有两个相异的实根,求实数a的取值范围.具体答案哦...
高中数学:设函数f(x)=(1+x)^2-In(1+x)^2,若关于的x的方程f(x)=x^2+x+a在[0,2]上恰有两个相异的实根,求实数a的取值范围. 具体答案哦
展开
5个回答
展开全部
解:
整理即方程:x-a+1-ln(1+x)^2=0,在[0,2]上有两异根
记h(x)=x-a+1-ln(1+x)^2,
则h'(x)=1-2/(x+1)=(x-1)/(x+1),
由h'(x)>0得x<-1或x>1,
由h'(x)<0得-1<x<1,
所以h(x)在[0,1]递减,在[1,2]上递增.
于是h(x)=0在[0,2]上恰有两异根得:
h(0)=1-a>=0,h(1)=2-a-2ln2<0,h(2)=3-a-2ln3>=0,
解得2-2ln2<a<=3-2ln3,即为所求结果。
【这样的题目最好数形结合,另外分离常数也是个方法】
整理即方程:x-a+1-ln(1+x)^2=0,在[0,2]上有两异根
记h(x)=x-a+1-ln(1+x)^2,
则h'(x)=1-2/(x+1)=(x-1)/(x+1),
由h'(x)>0得x<-1或x>1,
由h'(x)<0得-1<x<1,
所以h(x)在[0,1]递减,在[1,2]上递增.
于是h(x)=0在[0,2]上恰有两异根得:
h(0)=1-a>=0,h(1)=2-a-2ln2<0,h(2)=3-a-2ln3>=0,
解得2-2ln2<a<=3-2ln3,即为所求结果。
【这样的题目最好数形结合,另外分离常数也是个方法】
展开全部
整理即方程:x-a+1-ln(1+x)^2=0,在[0,2]上有两异根
记h(x)=x-a+1-ln(1+x)^2,
则h'(x)=1-2/(x+1)=(x-1)/(x+1),
由h'(x)>0得x<-1或x>1,
由h'(x)<0得-1<x<1,
所以h(x)在[0,1]递减,在[1,2]上递增.
于是h(x)=0在[0,2]上恰有两异根得:
h(0)=1-a>=0,h(1)=2-a-2ln2<0,h(2)=3-a-2ln3>=0,
解得2-2ln2<a<=3-2ln3,即为所求结果。
记h(x)=x-a+1-ln(1+x)^2,
则h'(x)=1-2/(x+1)=(x-1)/(x+1),
由h'(x)>0得x<-1或x>1,
由h'(x)<0得-1<x<1,
所以h(x)在[0,1]递减,在[1,2]上递增.
于是h(x)=0在[0,2]上恰有两异根得:
h(0)=1-a>=0,h(1)=2-a-2ln2<0,h(2)=3-a-2ln3>=0,
解得2-2ln2<a<=3-2ln3,即为所求结果。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
整理即方程:x-a+1-ln(1+x)^2=0,在[0,2]上有两异根
记h(x)=x-a+1-ln(1+x)^2,
则h'(x)=1-2/(x+1)=(x-1)/(x+1),
由h'(x)>0得x<-1或x>1,
由h'(x)<0得-1<x<1,
所以h(x)在[0,1]递减,在[1,2]上递增.
于是h(x)=0在[0,2]上恰有两异根得:
h(0)=1-a>=0,h(1)=2-a-2ln2<0,h(2)=3-a-2ln3>=0,
解得2-2ln2<a<=3-2ln3,即为所求结果。
整理即方程:x-a+1-ln(1+x)^2=0,在[0,2]上有两异根
记h(x)=x-a+1-ln(1+x)^2,
则h'(x)=1-2/(x+1)=(x-1)/(x+1),
由h'(x)>0得x<-1或x>1,
由h'(x)<0得-1<x<1,
所以h(x)在[0,1]递减,在[1,2]上递增.
于是h(x)=0在[0,2]上恰有两异根得:
h(0)=1-a>=0,h(1)=2-a-2ln2<0,h(2)=3-a-2ln3>=0,
解得2-2ln2<a<=3-2ln3,即为所求结果。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-04-11
展开全部
h(x)=x-a+1-ln(1+x)^2,
则h'(x)=1-2/(x+1)=(x-1)/(x+1),
由h'(x)>0得x<-1或x>1,
由h'(x)<0得-1<x<1,
所以h(x)在[0,1]递减,在[1,2]上递增.
则h'(x)=1-2/(x+1)=(x-1)/(x+1),
由h'(x)>0得x<-1或x>1,
由h'(x)<0得-1<x<1,
所以h(x)在[0,1]递减,在[1,2]上递增.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你把那你呢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询