几道初一数学证明题!!!!急急急急急急急!帮帮我!!!
(1)已知,如图(1),∠B=60°,∠C=20°,∠1=3∠A,则∠A多少度?(2)如图(2),AF是△ABC的高,AD是△ABC的角平分线,求证∠DAF=1/2(∠C...
(1)已知,如图(1),∠B=60°,∠C=20°,∠1=3∠A,则∠A多少度?
(2)如图(2),AF是△ABC的高,AD是△ABC的角平分线,求证∠DAF=1/2(∠C-∠B)
(3)如图(3),BC=3BD,AE=2CE,三角形ABD面积为6,求三角形DCE的面积
(4)平行四边形ABCD中,S△BIF=a,S△EDG=b, S四边形AFHE=c,求四边形CGHI的面积
(5)正方形ABCD与正方形CEFG的边BC与CE在一直线上,若正方形ABCD的边长为5,求三角形BDF的面积。
要有过程!!!!急急急急急急急!!!!!请各位帮一下忙!!!!
不要只答一两道阿- -全答一下 展开
(2)如图(2),AF是△ABC的高,AD是△ABC的角平分线,求证∠DAF=1/2(∠C-∠B)
(3)如图(3),BC=3BD,AE=2CE,三角形ABD面积为6,求三角形DCE的面积
(4)平行四边形ABCD中,S△BIF=a,S△EDG=b, S四边形AFHE=c,求四边形CGHI的面积
(5)正方形ABCD与正方形CEFG的边BC与CE在一直线上,若正方形ABCD的边长为5,求三角形BDF的面积。
要有过程!!!!急急急急急急急!!!!!请各位帮一下忙!!!!
不要只答一两道阿- -全答一下 展开
8个回答
展开全部
(1)延长BD交AC于E
则由三角形一个外角等于两个不相邻的内角之和得
∠BEC=∠B+∠A,∠1=∠BEC+∠C
所以∠1=∠A+∠B+∠C
所以3∠A=∠A+60°+20°
∠A=40°
(2)因为AD是∠A的平分线
所以∠BAD=∠CAD
又因为∠BAF-∠DAF=∠BAD,∠CAF+∠DAF=∠CAD
所以∠BAF-∠DAF=∠CAF+∠DAF
所以2∠DAF=∠BAF-∠CAF
因为AF是高
所以∠B+∠BAF=90°
∠C+∠CAF=90°
两式相减得∠B-∠C+∠BAF-∠CAF=0
所以2∠DAF=∠BAF-∠CAF=∠C-∠B
所以∠DAF=1/2(∠C-∠B)
(3)因为BC=3BD
所以S△ABC=3S△ABD=18
所以S△DAC=12
因为AE=2CE
所以S△DAE=2S△DCE
所以S△DCE=12/3=4
(这道题用到的知识是:当两个三角形的高相同时,他们的面积比等于底的比)
(4)设平行四边形面积为s
因为E、F是平行四边形上的点
所以△BCE=s/2
所以S△ABE+S△CDE=a+b+c+S△FHI+S△CDG=s/2
同样S△CDF=s/2
即S四边形CGHI=S△CDF-S△FHI+S△CDG=a+b+c
也就是说所求四边形面积正好是已知的三个三角形面积之和
(5)这道题和上一道题的思路是一样的,也是相同面积的转换
设正方形CEFG边长为a,BF与CD交于点H
则S△BEF=a(a+5)/2
S梯形FECD=(a+5)a/2
而上面两个图形去掉公共部分(梯形HCEF)就可以得到
S△BCH=S△FDH
所以S△BDF=S△BHD+S△FDH=S△BHD+S△BCH=S△BCD=S正方形ABCD/2
所以S△BDF=25/2
则由三角形一个外角等于两个不相邻的内角之和得
∠BEC=∠B+∠A,∠1=∠BEC+∠C
所以∠1=∠A+∠B+∠C
所以3∠A=∠A+60°+20°
∠A=40°
(2)因为AD是∠A的平分线
所以∠BAD=∠CAD
又因为∠BAF-∠DAF=∠BAD,∠CAF+∠DAF=∠CAD
所以∠BAF-∠DAF=∠CAF+∠DAF
所以2∠DAF=∠BAF-∠CAF
因为AF是高
所以∠B+∠BAF=90°
∠C+∠CAF=90°
两式相减得∠B-∠C+∠BAF-∠CAF=0
所以2∠DAF=∠BAF-∠CAF=∠C-∠B
所以∠DAF=1/2(∠C-∠B)
(3)因为BC=3BD
所以S△ABC=3S△ABD=18
所以S△DAC=12
因为AE=2CE
所以S△DAE=2S△DCE
所以S△DCE=12/3=4
(这道题用到的知识是:当两个三角形的高相同时,他们的面积比等于底的比)
(4)设平行四边形面积为s
因为E、F是平行四边形上的点
所以△BCE=s/2
所以S△ABE+S△CDE=a+b+c+S△FHI+S△CDG=s/2
同样S△CDF=s/2
即S四边形CGHI=S△CDF-S△FHI+S△CDG=a+b+c
也就是说所求四边形面积正好是已知的三个三角形面积之和
(5)这道题和上一道题的思路是一样的,也是相同面积的转换
设正方形CEFG边长为a,BF与CD交于点H
则S△BEF=a(a+5)/2
S梯形FECD=(a+5)a/2
而上面两个图形去掉公共部分(梯形HCEF)就可以得到
S△BCH=S△FDH
所以S△BDF=S△BHD+S△FDH=S△BHD+S△BCH=S△BCD=S正方形ABCD/2
所以S△BDF=25/2
展开全部
(1)40度
解:∠A+∠B+∠C+∠D=360°
∠A +60+20°+(360°-∠1)=360°
∠A-∠1+80°=0°
∠1=3∠A代入得:∠A-3∠A+80°=0 ° ∠A=40°
(2)证明如下
AF是△ABC的高,有∠CAF+∠C=(∠BAD+∠DAF)+∠B=90 1式
AD是△ABC的角平分线,有∠BAD=∠DAF+∠CAF 2式
2式代入1式得:∠CAF+∠C=∠DAF+∠CAF +∠DAF+∠B
2∠CAF =∠C-∠B
∠CAF =1/2(∠C-∠B)
(3)DCE的面积为1.5
解:作辅助线,分别过A、E做BC的高,分别交于M、N;
有相似比三角形,CAM相似CEN,所以CE/CA=EN/AM=1/3
又有BC=3BD,则三角形ABD:三角形CED=3*1/3:1=1:1
三角形ABD面积=6
解:∠A+∠B+∠C+∠D=360°
∠A +60+20°+(360°-∠1)=360°
∠A-∠1+80°=0°
∠1=3∠A代入得:∠A-3∠A+80°=0 ° ∠A=40°
(2)证明如下
AF是△ABC的高,有∠CAF+∠C=(∠BAD+∠DAF)+∠B=90 1式
AD是△ABC的角平分线,有∠BAD=∠DAF+∠CAF 2式
2式代入1式得:∠CAF+∠C=∠DAF+∠CAF +∠DAF+∠B
2∠CAF =∠C-∠B
∠CAF =1/2(∠C-∠B)
(3)DCE的面积为1.5
解:作辅助线,分别过A、E做BC的高,分别交于M、N;
有相似比三角形,CAM相似CEN,所以CE/CA=EN/AM=1/3
又有BC=3BD,则三角形ABD:三角形CED=3*1/3:1=1:1
三角形ABD面积=6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.∠D=360-3∠A
四边形内角和为360°,所以∠A+∠B+∠C+∠D=360°,即∠A+60+20+360-3∠A=360
2∠A=80,∠A=40°
2.AD为平分线,所以∠DAC=1/2∠BAC
∴∠DAF=∠DAC- ∠FAC
=1/2∠BAC - ∠FAC
=1/2(180-∠B-∠C)-(90-∠C)
=90-1/2∠B-1/2∠C-90+∠C
=1/2(∠C-∠B),原命题得证
3.BC=3BD,∴△ADC面积为△ABD面积两倍,为12(两三角形等高,底边为两倍关系)
AE=2CE,∴△DCE面积为△ADC面积的1/3,为1/3×12=4
4.为了直观,假设平行四边形ABCD面积为S,△EGH面积为S(1),△FHI面积为S(2),所求区域面积为S(x),
△BCE面积为1/2 S,而△ADF和△BCF面积之和也为1/2S,
△BCE面积为S(1)+S(2)+S(x),△ADF和△BCF面积之和为[b+c+S(1)]+[a+S(2)],
两个面积相等,联立即可得 S(x)=a+b+c
故所求区域面积为a+b+c
5.设大正方形边长为a,小正方形边长为b
S△DBF=两个正方形面积+△DGF面积-(△ABD+△BEF)
两个正方形面积+△DGF面积=a×a+b×b+(a-b)×b/2=a^2+ab/2+(b^2)/2
S(△ABD+△BEF)=(a^2)/2+(a+b)b/2=(a^2)/2+(b^2)/2+ab/2
所以S△DBF=以上两式相减=(a^2)/2 = 5×5/2 = 12.5
四边形内角和为360°,所以∠A+∠B+∠C+∠D=360°,即∠A+60+20+360-3∠A=360
2∠A=80,∠A=40°
2.AD为平分线,所以∠DAC=1/2∠BAC
∴∠DAF=∠DAC- ∠FAC
=1/2∠BAC - ∠FAC
=1/2(180-∠B-∠C)-(90-∠C)
=90-1/2∠B-1/2∠C-90+∠C
=1/2(∠C-∠B),原命题得证
3.BC=3BD,∴△ADC面积为△ABD面积两倍,为12(两三角形等高,底边为两倍关系)
AE=2CE,∴△DCE面积为△ADC面积的1/3,为1/3×12=4
4.为了直观,假设平行四边形ABCD面积为S,△EGH面积为S(1),△FHI面积为S(2),所求区域面积为S(x),
△BCE面积为1/2 S,而△ADF和△BCF面积之和也为1/2S,
△BCE面积为S(1)+S(2)+S(x),△ADF和△BCF面积之和为[b+c+S(1)]+[a+S(2)],
两个面积相等,联立即可得 S(x)=a+b+c
故所求区域面积为a+b+c
5.设大正方形边长为a,小正方形边长为b
S△DBF=两个正方形面积+△DGF面积-(△ABD+△BEF)
两个正方形面积+△DGF面积=a×a+b×b+(a-b)×b/2=a^2+ab/2+(b^2)/2
S(△ABD+△BEF)=(a^2)/2+(a+b)b/2=(a^2)/2+(b^2)/2+ab/2
所以S△DBF=以上两式相减=(a^2)/2 = 5×5/2 = 12.5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、连线BC。则A+B+C+另外两角=180度=A+60+20
且3A+另外两角=180度
A=40度
2、90-B=角BAD+角DAF
90-C+角DAF=角BAD
所以90-B=90-C+角DAF+角DAF
即角DAF=1/2(角C-角B)
3、BD*h*1/2=6, 需要求的三角形面积:CD*1/3h*1/2=1/6*h*2BD=4
4、不知道
5、不知道
且3A+另外两角=180度
A=40度
2、90-B=角BAD+角DAF
90-C+角DAF=角BAD
所以90-B=90-C+角DAF+角DAF
即角DAF=1/2(角C-角B)
3、BD*h*1/2=6, 需要求的三角形面积:CD*1/3h*1/2=1/6*h*2BD=4
4、不知道
5、不知道
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1:应用四边形内角和360°
B+C+A+D=60+20+A+(360-3A)=360
=>A=40°
2;ADF=B+BAD=B+DAC=B+DAF+FAC=B+DAF+(90-C)
=>ADF=90-DAF=B+DAF+90-C
=>2DAF=C-B=>DAF=1/2(C-B)
3:过A点作三角形ABD的高AF,过E点作三角形DEC的高EG
三角形EGC与三角形AFC相似,因此EG/AF=EC/AC=1/2
因此三角形DEC的面积=1/2EG*DC=1/2*1/2AF*2BD=1/2*AF*BD=三角形ABD的面积=6
B+C+A+D=60+20+A+(360-3A)=360
=>A=40°
2;ADF=B+BAD=B+DAC=B+DAF+FAC=B+DAF+(90-C)
=>ADF=90-DAF=B+DAF+90-C
=>2DAF=C-B=>DAF=1/2(C-B)
3:过A点作三角形ABD的高AF,过E点作三角形DEC的高EG
三角形EGC与三角形AFC相似,因此EG/AF=EC/AC=1/2
因此三角形DEC的面积=1/2EG*DC=1/2*1/2AF*2BD=1/2*AF*BD=三角形ABD的面积=6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、延长BD,交AC于点E
∠EDC=180°-∠1
∠AEB=∠EDC+∠C
∠A+∠B+∠AEB=180°
∴180°-(180°-∠1+20°+60°)=1/3∠1
∠1=120° ∠A=40°
2、∠C+90°+∠FAC=180°............1式
∠B+90°+∠FAB=180°..................2式
∠FAC=∠DAC-∠DAF
∠FAB=∠DAB+∠DAF
AD为角平分线 ∴∠BAD=∠CAD
∴∠FAC+∠DAF=∠FAB-∠DAF......3式
将1、2式带入3式
故∠DAF=1/2(∠C-∠B)
3、△ABD的面积=6,又知
BC=3BD 则CD=2BD △ABD与△ADC同高 故△ADC的面积=2*△ABD的面积=12
∵AE=2CE ∴AC=3CE
3*△CDE的面积=△ADC的面积
△CDE的面积=1/3*△ADC的面积=1/3*12=4
4、连接AC
则S△AFC=S△AFD S△ABE=S△ACE
∴S△AFD+S△ABE=S四边形AFCE
S四边形AFIE+a=S△ABE
S四边形AFGE+b=S△AFD S四边形AFCE=S四边形AFIE+S四边形AFGE+a+b
∴S四边形AFCE=2*c+S△HFG+S△HFI+a+b
∴S四边形HICG=a+b+c
5、设大正方形边长为a,小正方形边长为b
S△DBF=两个正方形面积+△DGF面积-(△ABD+△BEF)
两个正方形面积+△DGF面积=a×a+b×b+(a-b)×b/2=a^2+ab/2+(b^2)/2
S(△ABD+△BEF)=(a^2)/2+(a+b)b/2=(a^2)/2+(b^2)/2+ab/2
所以S△DBF=以上两式相减=(a^2)/2 = 5×5/2 = 12.5
∠EDC=180°-∠1
∠AEB=∠EDC+∠C
∠A+∠B+∠AEB=180°
∴180°-(180°-∠1+20°+60°)=1/3∠1
∠1=120° ∠A=40°
2、∠C+90°+∠FAC=180°............1式
∠B+90°+∠FAB=180°..................2式
∠FAC=∠DAC-∠DAF
∠FAB=∠DAB+∠DAF
AD为角平分线 ∴∠BAD=∠CAD
∴∠FAC+∠DAF=∠FAB-∠DAF......3式
将1、2式带入3式
故∠DAF=1/2(∠C-∠B)
3、△ABD的面积=6,又知
BC=3BD 则CD=2BD △ABD与△ADC同高 故△ADC的面积=2*△ABD的面积=12
∵AE=2CE ∴AC=3CE
3*△CDE的面积=△ADC的面积
△CDE的面积=1/3*△ADC的面积=1/3*12=4
4、连接AC
则S△AFC=S△AFD S△ABE=S△ACE
∴S△AFD+S△ABE=S四边形AFCE
S四边形AFIE+a=S△ABE
S四边形AFGE+b=S△AFD S四边形AFCE=S四边形AFIE+S四边形AFGE+a+b
∴S四边形AFCE=2*c+S△HFG+S△HFI+a+b
∴S四边形HICG=a+b+c
5、设大正方形边长为a,小正方形边长为b
S△DBF=两个正方形面积+△DGF面积-(△ABD+△BEF)
两个正方形面积+△DGF面积=a×a+b×b+(a-b)×b/2=a^2+ab/2+(b^2)/2
S(△ABD+△BEF)=(a^2)/2+(a+b)b/2=(a^2)/2+(b^2)/2+ab/2
所以S△DBF=以上两式相减=(a^2)/2 = 5×5/2 = 12.5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询