求证:(1+cosθ+cosθ/2) /(sinθ+sinθ/2)=sinθ/1-cosθ
2个回答
展开全部
证明:因为 [ sin θ +sin (θ/2) ] sin θ =(sin θ)^2 +sin (θ/2) sin θ,
[ 1 +cos θ +cos (θ/2) ] (1 -cos θ)
=(1 +cos θ) (1 -cos θ) +cos (θ/2) (1 -cos θ)
=1 -(cos θ)^2 +cos (θ/2) *2 [ sin (θ/2) ]^2
=(sin θ)^2 +2 sin (θ/2) cos (θ/2) *sin (θ/2)
=(sin θ)^2 +sin θ sin (θ/2),
所以 [ sin θ +sin (θ/2) ] sin θ = [ 1 +cos θ +cos (θ/2) ] (1 -cos θ).
所以 [ 1 +cos θ +cos (θ/2) ] / [ sin θ +sin (θ/2) ] = sin θ /(1 -cos θ).
= = = = = = = = =
要证 a/b =c/d,
只需证 ad =bc.
[ 1 +cos θ +cos (θ/2) ] (1 -cos θ)
=(1 +cos θ) (1 -cos θ) +cos (θ/2) (1 -cos θ)
=1 -(cos θ)^2 +cos (θ/2) *2 [ sin (θ/2) ]^2
=(sin θ)^2 +2 sin (θ/2) cos (θ/2) *sin (θ/2)
=(sin θ)^2 +sin θ sin (θ/2),
所以 [ sin θ +sin (θ/2) ] sin θ = [ 1 +cos θ +cos (θ/2) ] (1 -cos θ).
所以 [ 1 +cos θ +cos (θ/2) ] / [ sin θ +sin (θ/2) ] = sin θ /(1 -cos θ).
= = = = = = = = =
要证 a/b =c/d,
只需证 ad =bc.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询