初三数学 函数题
如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相...
如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D
探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请写出解答过程 展开
探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请写出解答过程 展开
2个回答
展开全部
解:
设抛物线y=a(x+1)(x-3),
将(0.-3)代人,得,
a=1,
所以抛物线为y=x^2-2x-3=(x-1)^2-4,
所以抛物线的顶点为(1,-4),
由两点距离公式,得
BC=3√2,CD=√2,BD=2√5,
BC^2+CD^2
=18+2=20=BD^2
所以△BCD是直角三角形,∠BCD=90°,
因为BC/CD=OC/AO=3
所以△ACO和△BCD相似,
过A作AP⊥AC交抛物线于P,过P作x轴垂线,垂足为Q
因为∠PAB=∠ACO=∠CBE,
所以只要满足AP/PQ=3即可,
设P(x,y),因为P在抛物线上,所以y=x^2-2x-3,
AP=AO+OP=1+x,
所以1+x=3(x^2-2x-3),
解得x1=-1,x2=10/3
所以P(10/3,13/9)
若以AC为直径作圆,与抛物线没有交点,所以没有直角三角形,
若果C作垂线,要想与△BCD相似,则P(9,0),但不在抛物线上,
所以符合条件的P点为(10/3,13/9)
设抛物线y=a(x+1)(x-3),
将(0.-3)代人,得,
a=1,
所以抛物线为y=x^2-2x-3=(x-1)^2-4,
所以抛物线的顶点为(1,-4),
由两点距离公式,得
BC=3√2,CD=√2,BD=2√5,
BC^2+CD^2
=18+2=20=BD^2
所以△BCD是直角三角形,∠BCD=90°,
因为BC/CD=OC/AO=3
所以△ACO和△BCD相似,
过A作AP⊥AC交抛物线于P,过P作x轴垂线,垂足为Q
因为∠PAB=∠ACO=∠CBE,
所以只要满足AP/PQ=3即可,
设P(x,y),因为P在抛物线上,所以y=x^2-2x-3,
AP=AO+OP=1+x,
所以1+x=3(x^2-2x-3),
解得x1=-1,x2=10/3
所以P(10/3,13/9)
若以AC为直径作圆,与抛物线没有交点,所以没有直角三角形,
若果C作垂线,要想与△BCD相似,则P(9,0),但不在抛物线上,
所以符合条件的P点为(10/3,13/9)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询