如图1,已知双曲线y1=k/x(k>0)与直线y2=k'x交与A,B两点,点A在第一象限,试解答下列题目

(1)若点A的坐标为(4,2),则点B的坐标为(-4,-2);当x满足:X<-4或0<X<4时,y1>y2;(2)过原点O作另一条直线l,交双曲线于P,Q两点,点P在第一... (1)若点A的坐标为(4,2),则点B的坐标为 (-4,-2);当x满足:X<-4或0<X<4时,y1>y2;
(2)过原点O作另一条直线l,交双曲线 于P,Q两点,点P在第一象限,如图2所示.
①四边形APBQ一定是 平行四边形;
②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积;
③设点A、P的横坐标分别为m、n,四边形APBQ可能是矩形吗?若可能,求m,n应满足的条件;若不可能,请说明理由.
第②③要过程,初二知识
展开
喺_o
2011-04-17 · TA获得超过272个赞
知道答主
回答量:3
采纳率:0%
帮助的人:0
展开全部
数与形相结和,理解正比例函数与反比例函数的性质,并对函数的性质灵活运用,同时也训练了平形四边形和矩行的相关性质.点A与点B关于原点对称,所以B点坐标为(-4,-2),在第三象限当x<-4时y1>y2,在第一象限当0<x<4时y1>y2.由对角线互相平分的四边形是平行四边形可证明APBQ是平行四边形.平行四边形的对角线把它分成四个面积相等的三角形,所以只要求出△AOP的面积,再将其乘以4就可以得到APBQ的面积.根据对角线相等的平行四边形是矩形可知,当mn=k时OP=OA,此时APBQ是矩形.
解答:解:(1)因为正比例函数与反比例都关于原点成中心对称,所以B点的坐标为B(-4,-2);由两个函数都经过点A(4,2),可知双曲线的解析式为y1= 8x,直线的解析式为y2= 12x,双曲线在每一象限y随x的增大而减小,直线y随x的增大而增大,
所以当x<-4或0<x<4时,y1>y2.
(2)证明:∵正比例函数与反比例函数都关于原点成中心对称,
∴OA=OB,OP=OQ,根据对角线互相平分的四边形是平行四边形可知APBQ一定是平行四边形.
②∵A点的坐标是(3,1)
∴双曲线为y= 3x,
所以P点坐标为(1,3),
过A作x轴的垂线可得直角梯形,再过P做垂线的垂线,
用直角梯形的面积减去直角三角形的面积可得三角形POA的面积为4,再用4×4得四边形APBQ为16.
③当mn=k时,OA=OP,对角线相等且互相平分的四边形是矩形,所以四边形APBQ是矩形
匿名用户
2011-04-17
展开全部
东林的?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式