已知RT三角形ABC中,角C等于90度,点D为AB的中点,E为AC上任意一点,作DF垂直DE交BC于点F。

求证:“AE^2+BF^2=CE^2+CF^2"... 求证:“AE^2+BF^2=CE^2+CF^2" 展开
网络用户zxc
2011-04-16 · TA获得超过391个赞
知道答主
回答量:11
采纳率:0%
帮助的人:0
展开全部
连接EF,将三角形ADE绕点D逆时针旋转180度,得△BDE'(AD与BD重合)连接FE'
因为角FDE=90°,所以角ADE+角BDF=90°,因为角ADE=角BDE',所以角FDB+角BDE'=90°,EDE'共线。因为DE=DE',FD⊥EE',所以FE=FE'.
因为AE=BE',所以AE^2+BF^2=BE'^2+BF^2=E'F^2.
因为∠C=90°,所以CE^2+CF^2=EF^2.
所以AE^2+BF^2=CE^2+CF^2。
希望对你有帮助!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式