如图,等腰Rt△ABC中,∠BAC=90°,AB=AC,D为AC边上一点,连接BD,以BD为腰作等腰Rt△BDE,DE交BC于点F

(1)求证△ABD∽△CBE(2)连接CE,求证BC-CE=√2CD(3)若AB=2,D为AC中点,请直接写出线段DF的长度为__PS如有根号麻烦用√表示... (1)求证△ABD∽△CBE
(2)连接CE,求证BC-CE=√2CD
(3)若AB=2,D为AC中点,请直接写出线段DF的长度为__
PS如有根号麻烦用√表示
展开
杜鹃如晓飞9
2011-04-17 · TA获得超过211个赞
知道答主
回答量:44
采纳率:0%
帮助的人:33.4万
展开全部
(1)
∵ △ABC 和△DBE都是等腰直角三角形
∴ BA/BC=BD/BE=1/√2
∵∠ABD=∠CBE =45°-∠DBC
∴△ABD∽△CBE

(2)
AD/CE = 1/√2,即:CE = √2 AD
∵BC=√2AC
∴ BC-CE =√2AC-√2AD=√2(AC–AD)=√2 CD

(3)
易知:BD = √5DH =CH=√2/2
∴BH =√(BD^²-DH^²)=3√2/2
∵△BDH∽△BFD
∴BD^²=BH*BF
∴BF=5√2/3
∴DF =√(BF^²-BD^²)=√5/3

(1)∠ABC = ∠DBE = 45° ==> ∠ABD = ∠CBE
BA: BC = BD: BE = √2
符合相似三角形中的SAS情况。所以△ABD∽△CBE
(2) 由(1)可知,CE: AD = BC: BA, 而 BC: BA = √2,所以
BC - CE = √2(BA - AD) = √2 (AC- AD) = √2CD
(3) 过F做AC的垂线,交AC于点P。那么通过比较三个角可以得到△ABD∽△PDF,
所以PD: PF = AB:AD = 2:1, 即PD = 2PF。
△CPF是等腰直角三角形,所以PC = PF。
由此可以得知,DC = PC+ PD = 3PF
而DC = AC / 2 = 2/2 = 1,所以PF = 1/3,PD = 2/3
根据勾股定理,DF = √(PF^2 + PD^2) = √5 / 3

以上为纯初中算法,其实(3)也可直接利用三角函数去计算,tan∠ABC = 1, tan∠ABD = 1/2 可以算出tan∠CBD = 1/3。
因此DF = BD/3。 而BD =√(AB^2 + AD^2) = √5

参考资料: http://zhidao.baidu.com/question/253886016.html?fr=im100009

苦茶物语
2011-04-17
知道答主
回答量:9
采纳率:0%
帮助的人:6.7万
展开全部
三角形abd∽三角形cbe
ab/CB=BD/EB=cos45°
∠abd=45-∠dbc
∠cbe=45-∠dbc
同角的余角相等
所以(“sas相似”)

bc=√2ac ce=√2ad (因为相似)
∴bc-ce=√(ac-ad)=√2cd
第三问不会
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式