如图,已知在梯形ABCD中,AD平行BC,AB=CD=5,AD/BC=2/5.cosB=3/5,P是边BC上的一个动点,∠APQ=∠B

如图,已知在梯形ABCD中,AD平行BC,AB=CD=5,AD/BC=2/5.cosB=3/5,P是边BC上的一个动点,∠APQ=∠B,PQ交射线AD于点Q。设点P到点B... 如图,已知在梯形ABCD中,AD平行BC,AB=CD=5,AD/BC=2/5.cosB=3/5,P是边BC上的一个动点,∠APQ=∠B,PQ交射线AD于点Q。设点P到点B的距离为x,点Q到点D的距离为y
(1)用含x的代数式表示AP的长。
(2)求y关于x的函数解析式,并写出它的定义域。
(3)△CPQ与△ABP能否相似?如果能,请求出BP的长;如果不能,请说明理由。
展开
For__nothing
2011-04-17
知道答主
回答量:29
采纳率:0%
帮助的人:9.6万
展开全部
1.由余弦定理得:AP2=AB+BP-2×AB×BP×cosB,解得: AP=√ X2-6X+5
2.∵AD‖BC ∴∠PAQ=∠APB 又∵∠APQ=∠B
∴△ABP$△QPA,
∴X/AP=AP/(y+AD) (1)
又因为ABCD是等腰梯形,设AD=2t,则BC=5t,所以cosB=AB/((5t-2t)/2).解得AD=2t=4.
代入(1)式,得:y=x+25/x-10;(0<x<10).
3.不能。
因为由2可知:△ABP$△QPA倘若△CPQ与△ABP,则△CPQ$△QPA,
所以∠PCQ=∠PQA=∠CPQ=∠QPA,又得AP=AQ,而AP=√ X2-6X+5,AQ=y+4=x+25/x-6显然AP=AQ不成立.
a709854680
2011-04-17
知道答主
回答量:10
采纳率:0%
帮助的人:4.5万
展开全部
1 AP²=AB+BP-2×AB×BP×cosB
------------
AP=√ X²-6X+5
2证明:∵AD‖BC ∴∠PAQ=∠APB
∵∠APQ=∠B AP=AP
∴∧ABP≌∧QPA
∴AQ=BP (1)
∵AB=CD=5,AD/BC=2/5.cosB=3/5
∴AD=4
∴AP+DQ=BP
∴Y=X-4
3 不能,如两三角形相似,比与三角形APQ相似,而两三角形有公共边.只能是全等
则有AQ=CQ或AQ=PC
则∠PAQ=∠PCQ 即QD二点重合
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式