已知f(x)是一次函数,且f[f(x)]=4x+3,求f(x)的解析式
结果为:f(x)=2x+1或f(x)=-2x+3
解题过程如下:
解:设f(x)=ax+b(a≠0)
则f[f(x)]=af(x)+b
∴a(ax+b)+b=a2x+ab+b
∴a2=4ab+b=3
∴a=2b=1或a=-2b=3
∴f(x)=2x+1或f(x)=-2x+3
扩展资料
求一次函数解析式的方法:
一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数。
x表示自变量,b表示y轴截距。且m和b均为常数。先设出函数解析式,再根据条件确定解析式中未知的斜率,从而得出解析式。该解析式类似于直线方程中的斜截式。
y的变化值与对应的x的变化值成正比例,比值为k。即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。当x=0时,b为函数在y轴上的交点,坐标为(0,b)。
k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。
将函数向上平移n格,函数解析式为y=kx+b+n,将函数向下平移n格,函数解析式为y=kx+b-n,将函数向左平移n格,函数解析式为y=k(x+n)+b,将函数向右平移n格,函数解析式为y=k(x-n)+b。
f(f(x))=f(ax+b)=a(ax+b)+b=a^2 *x +ab+b=4x+3
所以:
a^2=4
ab+b=3
解得:
a=2, b=1
或a=-2, b=-3
所以:
f(x)=2x+1
或f(x)=-2x-3
则f[f(x)]=a(ax+b)+b=a²x+ab+b
因为f[f(x)]=4x+3
所以a²=4,ab+b=3
所以a=±2,
a=2时,b=1
a=-2时,b=-3
所以
f(x)=2x+1或f(x)=-2x-3
2011-04-17
f[f(x)]=k(kx+b)+b=k*kx+kb+b=4x+3
所以k*k=4,k(b+1)=3
则k=2,b=1或k=-2,b=-3