在△ABC中,点P是边AC上的一个动点,过点P作直线MN‖BC,设MN交∠BCA的外角平分线于点E,交∠BCA的外角平

在△ABC中,点P是边AC上的一个动点,过点P作直线MN‖BC,设MN交∠BCA的外角平分线于点E,交∠BCA的外角平于点F(1)求证:PE=PF(2)当点P在边AC上运... 在△ABC中,点P是边AC上的一个动点,过点P作直线MN‖BC,设MN交∠BCA的外角平分线于点E,交∠BCA的外角平于点F
(1)求证:PE=PF
(2)当点P在边AC上运动时,四边形BCFE可能是菱形吗?说明理由
(3)若在AC边上存在点P,使四边形AECF是正方形,且AP/BC=(√3)/2。求此时∠A的大小
展开
覆水难收不给力
2011-04-17 · TA获得超过1万个赞
知道小有建树答主
回答量:379
采纳率:0%
帮助的人:465万
展开全部
解:(1)∵CE平分∠BCA,
∴∠BCE=∠ECP,
又∵MN‖BC,
∴∠BCE=∠CEP,
∴∠ECP=∠CEP,
∴PE=PC;
同理PF=PC,
∴PE=PF;

(2)当点P运动到AC边中点时,四边形AECF是矩形.理由如下:
由(1)可知PE=PF,
∵P是AC中点,
∴AP=PC,
∴四边形AECF是平行四边形.
∵CE、CF分别平分∠BCA、∠ACD,
且∠BCA+∠ACD=180°,
∴∠ECF=∠ECP+∠PCF= 1/2(∠BCA+∠ACD)= 1/2×180°=90°,
∴平行四边形AECF是矩形;

(3)证明:若四边形AECF是正方形,则AC⊥EF,AC=2AP.
∵EF‖BC,
∴AC⊥BC,
∴△ABC是直角三角形,且∠ACB=90°,
∴cos∠A= AC:BC=2AP:BC= √3,
∴∠A=30°.
huchengyue0505
2012-05-17 · TA获得超过521个赞
知道答主
回答量:333
采纳率:0%
帮助的人:55.3万
展开全部
2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式