已知sin^4θ+cos^4θ=5/9,求sin2θ的值
急需过程~我算出来sin^22θ=4/9,可别人得出的是8/9,为什么会是这样?完全不理解,希望能有人详细的写一下过程,最后答案到底是什么?...
急需过程~我算出来sin^22θ=4/9,可别人得出的是8/9,为什么会是这样?完全不理解,希望能有人详细的写一下过程,最后答案到底是什么?
展开
1个回答
展开全部
解:因为 (sin θ)^2 +(cos θ)^2 =1,
且 (sin θ)^4 +(cos θ)^4 =5/9,
所以 1 = [ (sin θ)^2 +(cos θ)^2 ]^2
= (sin θ)^4 +(cos θ)^4 +2 (sin θ)^2 (cos θ)^2
= 5/9 +(1/2) *(2 sin θ cos θ)^2
= 5/9 +(1/2) *(sin 2θ)^2.
解得 sin 2θ = ±2√2 /3.
= = = = = = = = =
注意:
2 (sin θ)^2 (cos θ)^2
= (1/2) *(2 sin θ cos θ)^2
= (1/2) *(sin 2θ)^2.
且 (sin θ)^4 +(cos θ)^4 =5/9,
所以 1 = [ (sin θ)^2 +(cos θ)^2 ]^2
= (sin θ)^4 +(cos θ)^4 +2 (sin θ)^2 (cos θ)^2
= 5/9 +(1/2) *(2 sin θ cos θ)^2
= 5/9 +(1/2) *(sin 2θ)^2.
解得 sin 2θ = ±2√2 /3.
= = = = = = = = =
注意:
2 (sin θ)^2 (cos θ)^2
= (1/2) *(2 sin θ cos θ)^2
= (1/2) *(sin 2θ)^2.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询