如图1 ,已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG 1求
2将1中△BEF绕B点逆时针旋转45°,如图2所示,取DF中点G,连接EG,CG问1中的结论是否仍然成立?若成立请给出证明图,....
2 将1中△BEF绕B点逆时针旋转45°,如图2所示,取DF中点G,连接EG,CG问1中的结论是否仍然成立?若成立请给出证明 图,
. 展开
. 展开
1个回答
展开全部
解:(1)证明:在Rt△FCD中,
∵G为DF的中点,
∴CG= FD,
同理,在Rt△DEF中,
EG= FD,
∴CG=EG.
(2)(1)中结论仍然成立,即EG=CG.
证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
在△DAG与△DCG中,
∵AD=CD,∠ADG=∠CDG,DG=DG,
∴△DAG≌△DCG,
∴AG=CG;
在△DMG与△FNG中,
∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,
∴△DMG≌△FNG,
∴MG=NG;
在矩形AENM中,AM=EN,
在Rt△AMG与Rt△ENG中,
∵AM=EN,MG=NG,
∴△AMG≌△ENG,
∴AG=EG,
∴EG=CG.
∵G为DF的中点,
∴CG= FD,
同理,在Rt△DEF中,
EG= FD,
∴CG=EG.
(2)(1)中结论仍然成立,即EG=CG.
证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
在△DAG与△DCG中,
∵AD=CD,∠ADG=∠CDG,DG=DG,
∴△DAG≌△DCG,
∴AG=CG;
在△DMG与△FNG中,
∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,
∴△DMG≌△FNG,
∴MG=NG;
在矩形AENM中,AM=EN,
在Rt△AMG与Rt△ENG中,
∵AM=EN,MG=NG,
∴△AMG≌△ENG,
∴AG=EG,
∴EG=CG.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询