如图,正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直

如图,正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直(1)证明:Rt△ABM~Rt△MCN;(2)当M点运动到什么位... 如图,正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直
(1)证明:Rt△ABM~Rt△MCN;
(2)当M点运动到什么位置时,Rt△ABM~Rt△AMN?
展开
咸同双00981
2011-04-19 · TA获得超过2160个赞
知道小有建树答主
回答量:153
采纳率:0%
帮助的人:0
展开全部

证明:因为有图形,所以用图片文件,请看以下图片文件,左键点击放大,如果还看不清,

请用左键按在看不清的图形上,往下一拖,就出现一个新的页面,就可以看了。不要“点击大图”

否则,没有用。

舍月3055
2012-05-28 · TA获得超过7.3万个赞
知道大有可为答主
回答量:5.7万
采纳率:0%
帮助的人:4152万
展开全部
(1)证明:Rt△ABM∽Rt△MCN;
如图
因为四边形ABCD为正方形
所以,∠BAM+∠AMB=90°
又,AM⊥MN
所以,∠AMN=90°
所以,∠AMB+∠CMN=90°
所以,∠BAM=∠CMN
而,∠B=∠C=90°
所以,Rt△ABM∽Rt△MCN
(2).
因为△ABM∽△MCN
所以AB/MC=BM/CN
所以4/(4-x)=x/CN
所以CN=(-x^2)/4+x
所以y=1/2*(AB+CN)*BC
=1/2*[4+(-x^2)/4+x]*4
=(-x^2)/2+2x+8
=-1/2(x-2)^2+10
当x=2时,即BC的中点
四边形ABCN面积最大,最大面积=10
(3).
因为Rt△ABM∽Rt△AMN,其中∠ABM=∠AMN=90°
所以,∠BAM=∠MAN
所以:AB/AM=BM/MN

在Rt△ABM中,由勾股定理得到:AM=√(16+x^2)
由(1)的过程知,CN=x(4-x)/4
所以,在Rt△MCN中由勾股定理得到:
MN=√{(4-x)^2+[x(4-x)/4]^2}=√{(4-x)^2+[x^2(4-x)^2/16]}
=√[(4-x)^2*(x^2+16)]/16
=[(4-x)/4]*√(x^2+16)
代入(1)中有:4/√(16+x^2)=x/[(4-x)/4]*√(x^2+16)
所以:x/(4-x)=1
解得:x=2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
班主任98
2011-04-19
知道答主
回答量:26
采纳率:0%
帮助的人:4.9万
展开全部
△AMN是直角,所以角BAM等于角CMN。所以Rt△ABM~Rt△MCN
当M运功到BC 的中点时Rt△ABM~Rt△AMN。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式