数学题:若已知x²-x+1=0,求x的1999次方+x的2000次方+1/x的1999次方+1/x的2000次方的值
3个回答
展开全部
已知x²-x+1=0
两边同乘以(x+1)得 x^3+1=0
x^3=-1
两边同除以x得 x+1/x=1
两边再平方得 X^2+1/x^2=-1
x的1999次方+x的2000次方+1/x的1999次方+1/x的2000次方
=x*(x^3)^666+(x^2)*(x^3)^666+1/[x*(x^3)^666]+1/[(x^2)*(x^3)^666]
=x*(-1)^666+(x^2)*(-1)^666+1[x*(-1)^666]+1/[(x^2)(-1)^666]
=x^2+x+1/x+1/x^2
=1-1
=0
两边同乘以(x+1)得 x^3+1=0
x^3=-1
两边同除以x得 x+1/x=1
两边再平方得 X^2+1/x^2=-1
x的1999次方+x的2000次方+1/x的1999次方+1/x的2000次方
=x*(x^3)^666+(x^2)*(x^3)^666+1/[x*(x^3)^666]+1/[(x^2)*(x^3)^666]
=x*(-1)^666+(x^2)*(-1)^666+1[x*(-1)^666]+1/[(x^2)(-1)^666]
=x^2+x+1/x+1/x^2
=1-1
=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这道题在实数范围内是不成立的。因为x²-x+1=0的Δ<0。
复数范围的话 x=(1+√3i)/2或者(1-√3i)/2,所以1/x=(1-√3i)/2或者(1+√3i)/2,实际上x和1/x就是这个方程的两个虚根。看着不像多项式展开能容易解出来的样子。
考虑x+1/x=1 可得出 x^2+1/x^2=-1
又考虑到x²-x+1=0 x≠-1 (x+1)(x²-x+1)=0 所以 x^3=-1 ,从而可以将原式化简为x+1/x+x^2+1/x^2,
所以答案是0。
这道题目技巧性稍强。
祝你进步。
复数范围的话 x=(1+√3i)/2或者(1-√3i)/2,所以1/x=(1-√3i)/2或者(1+√3i)/2,实际上x和1/x就是这个方程的两个虚根。看着不像多项式展开能容易解出来的样子。
考虑x+1/x=1 可得出 x^2+1/x^2=-1
又考虑到x²-x+1=0 x≠-1 (x+1)(x²-x+1)=0 所以 x^3=-1 ,从而可以将原式化简为x+1/x+x^2+1/x^2,
所以答案是0。
这道题目技巧性稍强。
祝你进步。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询