5个回答
展开全部
假设根号2是有理数,则不妨设根号2=a/b,故有a=2b,
但a/b为最简分数,必有a、b均为正整数且a、b互质,
这与a=2b矛盾。
故根号2不是有理数
但a/b为最简分数,必有a、b均为正整数且a、b互质,
这与a=2b矛盾。
故根号2不是有理数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:假设根号2是有理数,则可设根号2=Q/P(P、Q是整数,而且互质),则Q=根号2*P
所以 Q平方=2*P平方,因为右边是2的倍数,故左边Q平方也是2的倍数,从而Q是2的倍数,设Q=2n,代入Q平方=2*P平方
得:2*n平方=P平方,由于左边是2的倍数,
故右边P平方也是2的倍数,从而P是2的倍数,则P、Q都是2的倍数,
即P、Q有公因数2,这与P、Q互质相矛盾。
所以根号2不是有理数,是无理数。
所以 Q平方=2*P平方,因为右边是2的倍数,故左边Q平方也是2的倍数,从而Q是2的倍数,设Q=2n,代入Q平方=2*P平方
得:2*n平方=P平方,由于左边是2的倍数,
故右边P平方也是2的倍数,从而P是2的倍数,则P、Q都是2的倍数,
即P、Q有公因数2,这与P、Q互质相矛盾。
所以根号2不是有理数,是无理数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明根号2不是有理数,也就是要证明根号2是无理数。
证明:假设根号2是有理数,设根号2=Q/P(P、Q是整数,而且互质),则Q=根号2*P
所以 Q平方=2*P平方,因为右边是2的倍数,故左边Q平方也是2的倍数,从而Q是2的倍数,设Q=2n,代入Q平方=2*P平方得:2*n平方=P平方,由于左边是2的倍数,故右边P平方也是2的倍数,从而P是2的倍数,则P、Q都是2的倍数,即P、Q有公因数2,这与P、Q互质相矛盾。所以根号2不是有理数,是无理数。
证明:假设根号2是有理数,设根号2=Q/P(P、Q是整数,而且互质),则Q=根号2*P
所以 Q平方=2*P平方,因为右边是2的倍数,故左边Q平方也是2的倍数,从而Q是2的倍数,设Q=2n,代入Q平方=2*P平方得:2*n平方=P平方,由于左边是2的倍数,故右边P平方也是2的倍数,从而P是2的倍数,则P、Q都是2的倍数,即P、Q有公因数2,这与P、Q互质相矛盾。所以根号2不是有理数,是无理数。
参考资料: 百度
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.使用反证法可以证明
若根2为有理数,可设根2=p/q满足p,q为非0整数且互质.
推出2*q^2=p^2
推出p^2是偶数
推出2*q^2被四整除
推出q^2是偶数
推出q,p是偶数
推出p,q不互质,矛盾
所以根2不是有理数
2.如果根号2是一个分数,那么根号2可以表示为m/n(m、n是正整数,且没有大于1的公约数),即根号2=m/n.
根据平方根的意义,(m/n)的平方等于2,即m平方/n平方等于2,
2*n的平方=m平方。
由于上式左边是偶数,所以右边也是偶数,从而m也是偶数。
设m=2p(p是正整数),
把m=2p代入2*n的平方=m平方,得
2*n的平方=4*p的平方,即n平方=2*p的平方。
因此,n也是偶数。
于是,m、n都是偶数,所以m、n都是2的倍数,这与m、n没有大于1的公约数相矛盾。
因此,根号2=m/n是不可能的,也就是说根号2不是分数,所以不是有理数。
若根2为有理数,可设根2=p/q满足p,q为非0整数且互质.
推出2*q^2=p^2
推出p^2是偶数
推出2*q^2被四整除
推出q^2是偶数
推出q,p是偶数
推出p,q不互质,矛盾
所以根2不是有理数
2.如果根号2是一个分数,那么根号2可以表示为m/n(m、n是正整数,且没有大于1的公约数),即根号2=m/n.
根据平方根的意义,(m/n)的平方等于2,即m平方/n平方等于2,
2*n的平方=m平方。
由于上式左边是偶数,所以右边也是偶数,从而m也是偶数。
设m=2p(p是正整数),
把m=2p代入2*n的平方=m平方,得
2*n的平方=4*p的平方,即n平方=2*p的平方。
因此,n也是偶数。
于是,m、n都是偶数,所以m、n都是2的倍数,这与m、n没有大于1的公约数相矛盾。
因此,根号2=m/n是不可能的,也就是说根号2不是分数,所以不是有理数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询