求证:根号2不是有理数

求证:根号2不是有理数,用反证法证明... 求证:根号2不是有理数,用反证法证明 展开
我不是他舅
推荐于2016-12-02 · TA获得超过138万个赞
知道顶级答主
回答量:29.6万
采纳率:79%
帮助的人:34.4亿
展开全部
假设√2是有理数
则√2可以写成一个最简分数
假设是p/q=√2,p和q互质
平方
p^2=2q^2
右边是偶数,所以左边p^2是偶数
则p是偶数
设p=2n
则4n^2=2q^2
q^2=2n^2
这样则q也是偶数
这和p和q互质矛盾
所以假设错误
所以√2不是有理数
winstonevane
2011-04-21 · TA获得超过1753个赞
知道小有建树答主
回答量:888
采纳率:0%
帮助的人:580万
展开全部
假设根号2是有理数,则不妨设根号2=a/b,故有a=2b,
但a/b为最简分数,必有a、b均为正整数且a、b互质,
这与a=2b矛盾。
故根号2不是有理数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
士妙婧RF
2011-04-21 · TA获得超过7.8万个赞
知道大有可为答主
回答量:1.5万
采纳率:42%
帮助的人:8211万
展开全部
证明:假设根号2是有理数,则可设根号2=Q/P(P、Q是整数,而且互质),则Q=根号2*P
所以 Q平方=2*P平方,因为右边是2的倍数,故左边Q平方也是2的倍数,从而Q是2的倍数,设Q=2n,代入Q平方=2*P平方
得:2*n平方=P平方,由于左边是2的倍数,
故右边P平方也是2的倍数,从而P是2的倍数,则P、Q都是2的倍数,
即P、Q有公因数2,这与P、Q互质相矛盾。
所以根号2不是有理数,是无理数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友8a8f080
2011-04-21 · TA获得超过449个赞
知道小有建树答主
回答量:344
采纳率:0%
帮助的人:123万
展开全部
证明根号2不是有理数,也就是要证明根号2是无理数。
证明:假设根号2是有理数,设根号2=Q/P(P、Q是整数,而且互质),则Q=根号2*P
所以 Q平方=2*P平方,因为右边是2的倍数,故左边Q平方也是2的倍数,从而Q是2的倍数,设Q=2n,代入Q平方=2*P平方得:2*n平方=P平方,由于左边是2的倍数,故右边P平方也是2的倍数,从而P是2的倍数,则P、Q都是2的倍数,即P、Q有公因数2,这与P、Q互质相矛盾。所以根号2不是有理数,是无理数。

参考资料: 百度

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
fubinyangqiufu
2011-04-21 · TA获得超过150个赞
知道答主
回答量:126
采纳率:0%
帮助的人:0
展开全部
1.使用反证法可以证明
若根2为有理数,可设根2=p/q满足p,q为非0整数且互质.
推出2*q^2=p^2
推出p^2是偶数
推出2*q^2被四整除
推出q^2是偶数
推出q,p是偶数
推出p,q不互质,矛盾
所以根2不是有理数

2.如果根号2是一个分数,那么根号2可以表示为m/n(m、n是正整数,且没有大于1的公约数),即根号2=m/n.
根据平方根的意义,(m/n)的平方等于2,即m平方/n平方等于2,
2*n的平方=m平方。
由于上式左边是偶数,所以右边也是偶数,从而m也是偶数。
设m=2p(p是正整数),
把m=2p代入2*n的平方=m平方,得
2*n的平方=4*p的平方,即n平方=2*p的平方。
因此,n也是偶数。
于是,m、n都是偶数,所以m、n都是2的倍数,这与m、n没有大于1的公约数相矛盾。
因此,根号2=m/n是不可能的,也就是说根号2不是分数,所以不是有理数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式