如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作作⊙O1,⊙O2. (1)求⊙O1的半径; (
5个回答
展开全部
解:(1)∵正方形ABCD
∴AD=AB=BC=CD
∵O是对角线BD中点
∴OB=OD
在Rt△ABD中由勾股定理得,BD方=AB方-AD方
解出BD=4倍根号2
∴OB=OD=2倍根号2
∵OB,OD为直径
∴半径为根号2
(2)连接01E,O1F
∵BD为正方形ABCD的对角线
∴∠ABO=45°
∵O1E=O1B
∴∠BEO1=∠EBO1=45°
∴∠BO1E=90°
同理∠BO1F=90°
∴E,O1,F在同一直线
易证BE=BF=2
∴S△EBF=2*2*二分之一=2
同理另一三角形面积为2
扇形的面积为二分之一πR方=π
∴阴影=2π -4
∴AD=AB=BC=CD
∵O是对角线BD中点
∴OB=OD
在Rt△ABD中由勾股定理得,BD方=AB方-AD方
解出BD=4倍根号2
∴OB=OD=2倍根号2
∵OB,OD为直径
∴半径为根号2
(2)连接01E,O1F
∵BD为正方形ABCD的对角线
∴∠ABO=45°
∵O1E=O1B
∴∠BEO1=∠EBO1=45°
∴∠BO1E=90°
同理∠BO1F=90°
∴E,O1,F在同一直线
易证BE=BF=2
∴S△EBF=2*2*二分之一=2
同理另一三角形面积为2
扇形的面积为二分之一πR方=π
∴阴影=2π -4
2011-04-21
展开全部
:(1)在正方形ABCD中,AB=AD=4∠A=90°
∴BD= =4
∴OO1= BD=
∴⊙O1的半径= .
(2)连接01E
∵BD为正方形ABCD的对角线
∴∠ABO=45°
∵O1E=O1B
∴∠BEO1=∠EBO1=45°
∴∠BO1E=90°
∴S1=S扇形O1BE-S△O1BE= = -1
根据图形的对称性得:S1=S2=S3=S4
∴S扇形=4S1=2π-4.
∴BD= =4
∴OO1= BD=
∴⊙O1的半径= .
(2)连接01E
∵BD为正方形ABCD的对角线
∴∠ABO=45°
∵O1E=O1B
∴∠BEO1=∠EBO1=45°
∴∠BO1E=90°
∴S1=S扇形O1BE-S△O1BE= = -1
根据图形的对称性得:S1=S2=S3=S4
∴S扇形=4S1=2π-4.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)∵正方形ABCD
∴AD=AB=BC=CD
∵O是对角线BD中点
∴OB=OD
在Rt△ABD中由勾股定理得,BD方=AB方-AD方
解出BD=4倍根号2
∴OB=OD=2倍根号2
∵OB,OD为直径
∴半径为根号2
(2)连接01E,O1F
∵BD为正方形ABCD的对角线
∴∠ABO=45°
∵O1E=O1B
∴∠BEO1=∠EBO1=45°
∴∠BO1E=90°
同理∠BO1F=90°
∴E,O1,F在同一直线
易证BE=BF=2
∴S△EBF=2*2*二分之一=2
同理另一三角形面积为2
扇形的面积为二分之一πR方=π
∴阴影=2π -4
∴AD=AB=BC=CD
∵O是对角线BD中点
∴OB=OD
在Rt△ABD中由勾股定理得,BD方=AB方-AD方
解出BD=4倍根号2
∴OB=OD=2倍根号2
∵OB,OD为直径
∴半径为根号2
(2)连接01E,O1F
∵BD为正方形ABCD的对角线
∴∠ABO=45°
∵O1E=O1B
∴∠BEO1=∠EBO1=45°
∴∠BO1E=90°
同理∠BO1F=90°
∴E,O1,F在同一直线
易证BE=BF=2
∴S△EBF=2*2*二分之一=2
同理另一三角形面积为2
扇形的面积为二分之一πR方=π
∴阴影=2π -4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)在正方形ABCD中,AB=AD=4∠A=90°
∴BD=$\sqrt{16+16}$=4$\sqrt{2}$
∴OO1=$\frac{1}{4}$BD=$\sqrt{2}$
∴⊙O1的半径=$\sqrt{2}$.
∴BD=$\sqrt{16+16}$=4$\sqrt{2}$
∴OO1=$\frac{1}{4}$BD=$\sqrt{2}$
∴⊙O1的半径=$\sqrt{2}$.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询