长方体ABCD—A1B1C1D1中,AA1=c,AB=a,AD=b,且a>b,设AC1与BD所成的角为θ。求证θ的余弦值=(a^2-b^2)/
1个回答
展开全部
(具体参考 参考资料网址)
解析:
解一:连AC,设AC∩BD=0,则O为AC中点,取C1C的中点F,连OF,则OF‖AC1且OF=AC1,所以∠FOB即为AC1与DB所成的角。在△FOB中,OB=,OF=,BE=,由余弦定理得
cosEAC1==
解二:取AC1中点O1,B1B中点G.在△C1O1G中,∠C1O1G即AC1与DB所成的角。
解三:.延长CD到E,使ED=DC.则ABDE为平行四边形.AE‖BD,所以∠EAC1即为AC1与BD所成的角.连EC1,在△AEC1
中,AE=,AC1=,C1E=由余弦定理,得
cos∠EAC1==<0
所以∠EAC1为钝角.
根据异面直线所成角的定义,AC1与BD所成的角的余弦为
解析:
解一:连AC,设AC∩BD=0,则O为AC中点,取C1C的中点F,连OF,则OF‖AC1且OF=AC1,所以∠FOB即为AC1与DB所成的角。在△FOB中,OB=,OF=,BE=,由余弦定理得
cosEAC1==
解二:取AC1中点O1,B1B中点G.在△C1O1G中,∠C1O1G即AC1与DB所成的角。
解三:.延长CD到E,使ED=DC.则ABDE为平行四边形.AE‖BD,所以∠EAC1即为AC1与BD所成的角.连EC1,在△AEC1
中,AE=,AC1=,C1E=由余弦定理,得
cos∠EAC1==<0
所以∠EAC1为钝角.
根据异面直线所成角的定义,AC1与BD所成的角的余弦为
参考资料: http://gzsx.cooco.net.cn/testdetail/245705/
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询