已知a,b,c均为正整数,且a5=b4,c3=d2,a-c=65,则b-d=179. 要的是过程,好的加50分!!! 越详细分越
已知a,b,c均为正整数,且a5=b4,c3=d2,a-c=65,则b-d=179.要的是过程,好的加50分!!!!越详细分越多!!!!!!!!!!!!!!!!!!!!...
已知a,b,c均为正整数,且a5=b4,c3=d2,a-c=65,则b-d=179.
要的是过程,好的加50分!!!!
越详细分越多!!!!!!!!!!!!!!!!!!!! 展开
要的是过程,好的加50分!!!!
越详细分越多!!!!!!!!!!!!!!!!!!!! 展开
1个回答
展开全部
设a=m4,b=m5,c=x2,d=x3(m,x为正整数),根据已知a-c=65,运用因式分解的方法得到关于m,x的方程组,从而求解.
∵a5=b4,c3=d2,
∴可设a=m4,b=m5,c=x2,d=x3(m,x为正整数),
∵a-c=65,
∴m4-x2=65,
即(m2+x)(m2-x)=65,
∴$\left\{\begin{array}{l}{m^2}+x=65\\{m^2}-x=1\end{array}\right.$或$\left\{\begin{array}{l}{m^2}+x=13\\{m^2}-x=5\end{array}\right.$,
解得$\left\{\begin{array}{l}{m^2}=33\\x=32\end{array}\right.$或$\left\{\begin{array}{l}{m^2}=9\\x=4\end{array}\right.$,
则$\left\{\begin{array}{l}m=\sqrt{33}\\x=32\end{array}\right.$(m不为正整数故此结果舍去)或$\left\{\begin{array}{l}m=3\\x=4\end{array}\right.$,
∴b-d=m5-x3=343-64=179.
∵a5=b4,c3=d2,
∴可设a=m4,b=m5,c=x2,d=x3(m,x为正整数),
∵a-c=65,
∴m4-x2=65,
即(m2+x)(m2-x)=65,
∴$\left\{\begin{array}{l}{m^2}+x=65\\{m^2}-x=1\end{array}\right.$或$\left\{\begin{array}{l}{m^2}+x=13\\{m^2}-x=5\end{array}\right.$,
解得$\left\{\begin{array}{l}{m^2}=33\\x=32\end{array}\right.$或$\left\{\begin{array}{l}{m^2}=9\\x=4\end{array}\right.$,
则$\left\{\begin{array}{l}m=\sqrt{33}\\x=32\end{array}\right.$(m不为正整数故此结果舍去)或$\left\{\begin{array}{l}m=3\\x=4\end{array}\right.$,
∴b-d=m5-x3=343-64=179.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询