已知抛物线y^2=4x,F是焦点,直线l是经过点F的任意直线

chenzuilangzi
2011-04-23 · TA获得超过2.1万个赞
知道大有可为答主
回答量:1987
采纳率:0%
帮助的人:1153万
展开全部
1.
设M(x,y),直线L: x-1=ky
(这样设就已经包括斜率不存在的情况了,但是不包括斜率为0的情况,但是这题斜率为0显然不用讨论,这里的k不是斜率,斜率是1/k )
直线OM斜率为y/x
∴(1/k)·(y/x)=-1
k=-y/x
又∵M在L 上
∴x-1=ky,把k=-y/x代入得
x-1=-y²/x
即x²-x+y²=0
即(x-1/2)²+y²=1/4,x≠0

2.
设C(y1²/4,y1)、D(y2²/4,y2),则直线CD:y-y1=k[x - (y1²/4)]
由题意得:
x1x2+y1y2=-4
x1=y1²/4,x2=y2²/4
∴(y1y2)²/16 + y1y2 =-4
解得y1y2= -8
x1x2=(y1y2)²/16=4
k=(y1-y2)/(x1-x2)=(y1-y2)/[(y1²/4)-(y2²/4)]=4/(y1+y2)
∴直线CD:y-y1=k[x - (y1²/4)]
y-y1=[4/(y1+y2)][x - (y1²/4)]
y=[4/(y1+y2)][x - (y1²/4)] +y1
y=[4/(y1+y2)]·x - [4/(y1+y2)]·(y1²/4) +y1
y=[4/(y1+y2)]·x - [y1²/(y1+y2)] +y1
y=[4/(y1+y2)]·x + [y1y2/(y1+y2)]
y=[4/(y1+y2)]·x - [8/(y1+y2)]
y=[4/(y1+y2)](x - 2)
当k不存在时,CD:x=2
∴直线CD必定经过点(2,0)
wqyuzi9935f
2011-04-22 · TA获得超过386个赞
知道答主
回答量:117
采纳率:33%
帮助的人:57.1万
展开全部
设C(a^2,2a),D(b^2,2b)
因为OC*OD=-4,则a^2*b^2+4ab=-4,解得ab=-2
又直线CD的斜率=2/(a+b)
所以直线CD的方程为y=2/(a+b)*(x-a^2)+2a,即y=2/(a+b)*(x+ab),即y=2/(a+b)*(x-2)
显然直线CD恒过定点(2,0)。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式