如图,在梯形ABCD中,AD‖BC,AB=DC=AD,∠C=60°,AE⊥BD于点E. AE=1,求梯形ABCD的高
展开全部
(1)证明:∵AB=DC,
∴梯形ABCD为等腰梯形.
∵∠C=60°,
∴∠BAD=∠ADC=120°,
又∵AB=AD,
∴∠ABD=∠ADB=30°.
∵AD∥BC,
∴∠DBC=∠ADB=30°.
∴∠BDC=90°.(1分)
由已知AE⊥BD,
∴AE∥DC.(2分)
又∵AE为等腰三角形ABD的高,
∴E是BD的中点,
∵F是DC的中点,
∴EF∥BC.
∴EF∥AD.
∴四边形AEFD是平行四边形.(3分)
∴AE=DF(4分)
∵F是DC的中点,DG是梯形ABCD的高,
∴GF=DF,(5分)
∴AE=GF.(6分)
(2)解:在Rt△AED中,∠ADB=30°,
∵AE=1,
∴AD=2.
在Rt△DGC中∠C=60°,
并且DC=AD=2,
∴DG=3.(8分)
由(1)知:在平行四边形AEFD中EF=AD=2,
又∵DG⊥BC,
∴DG⊥EF,
∴四边形DEGF的面积=12EF•DG=3.(10分)
∴梯形ABCD为等腰梯形.
∵∠C=60°,
∴∠BAD=∠ADC=120°,
又∵AB=AD,
∴∠ABD=∠ADB=30°.
∵AD∥BC,
∴∠DBC=∠ADB=30°.
∴∠BDC=90°.(1分)
由已知AE⊥BD,
∴AE∥DC.(2分)
又∵AE为等腰三角形ABD的高,
∴E是BD的中点,
∵F是DC的中点,
∴EF∥BC.
∴EF∥AD.
∴四边形AEFD是平行四边形.(3分)
∴AE=DF(4分)
∵F是DC的中点,DG是梯形ABCD的高,
∴GF=DF,(5分)
∴AE=GF.(6分)
(2)解:在Rt△AED中,∠ADB=30°,
∵AE=1,
∴AD=2.
在Rt△DGC中∠C=60°,
并且DC=AD=2,
∴DG=3.(8分)
由(1)知:在平行四边形AEFD中EF=AD=2,
又∵DG⊥BC,
∴DG⊥EF,
∴四边形DEGF的面积=12EF•DG=3.(10分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∠C=60°,则∠BAD=120°,
AB=AD,∠ABD=30°,所以AB=2AE=2.
梯形ABCD的高=AB sin∠ABC=ABsin60°=√3.
AB=AD,∠ABD=30°,所以AB=2AE=2.
梯形ABCD的高=AB sin∠ABC=ABsin60°=√3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分别延长BA、CD交于一点设为O,
∵AD//BC
∴∠ADO=∠C=60°
∴△OAD为等边三角形
∵AB=AD=DC
∴△OBC也为等边三角形
∴AD=1/sin30°=2
过D点做BC的垂直线交于点F 则DF为梯形高
∴DC=2×sin60°=根号3
∵AD//BC
∴∠ADO=∠C=60°
∴△OAD为等边三角形
∵AB=AD=DC
∴△OBC也为等边三角形
∴AD=1/sin30°=2
过D点做BC的垂直线交于点F 则DF为梯形高
∴DC=2×sin60°=根号3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询