托勒密定理的证明
方法一:
(以下是推论的证明,托勒密定理可视作特殊情况。)
在任意凸四边形ABCD中(如下图),作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD,连接DE.
则△ABE∽△ACD
所以 BE/CD=AB/AC,即BE·AC=AB·CD (1)由△ABE∽△ACD得AD/AC=AE/AB,又∠BAC=∠EAD,
所以△ABC∽△AED.
BC/ED=AC/AD,即ED·AC=BC·AD (2)
(1)+(2),得
AC(BE+ED)=AB·CD+AD·BC
又因为BE+ED≥BD
(仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”)
复数证明:
用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。 首先注意到复数恒等式: (a−b)(c−d) + (a−d)(b−c) = (a−c)(b−d) ,两边取模,运用三角不等式得。等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。 四点不限于同一平面。 平面上,托勒密不等式是三角不等式的反演形式。
方法二:
设ABCD是圆内接四边形。 在弦BC上,圆周角∠BAC = ∠BDC,而在AB上,∠ADB = ∠ACB。 在AC上取一点K,使得∠ABK = ∠CBD; 因为∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD,所以∠CBK = ∠ABD。 因此△ABK与△DBC相似,同理也有△ABD ~ △KBC。 因此AK/AB = CD/BD,且CK/BC = DA/BD; 因此AK·BD = AB·CD,且CK·BD = BC·DA; 两式相加,得(AK+CK)·BD = AB·CD + BC·DA; 但AK+CK = AC,因此AC·BD = AB·CD + BC·DA。证毕。
方法三:
托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.
证明:如上图,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.得AC:BC=AD:BP,AC·BP=AD·BC ①。又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.得AC:CD=AB:DP,AC·DP=AB·CD ②。①+②得 AC(BP+DP)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.
方法四:
广义托勒密定理:设四边形ABCD四边长分别为a,b,c,d,两条对角线长分别为m、n,则有:
扩展资料:
1、托勒密定理推广:
托勒密不等式:凸四边形的两组对边乘积和不小于其对角线的乘积,取等号当且仅当共圆或共线。
简单的证明:复数恒等式:(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d),两边取模,
得不等式 AC·BD≤|(a-b)(c-d)|+|(b-c)(a-d)|=AB·CD+BC·AD
2、托勒密定理推论
(1)任意凸四边形ABCD,必有AC·BD≤AB·CD+AD·BC,当且仅当ABCD四点共圆时取等号。
(2)托勒密定理的逆定理同样成立:一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这个凸四边形内接于一圆
3、托勒密定理运用要点:
(1)等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。
(2)四点不限于同一平面。
欧拉定理:在一条线段上AD上,顺次标有B、C两点,则AD·BC+AB·CD=AC·BD
参考资料来源:百度百科 - 托勒密定理
托勒密定理:圆内接四边形两条对角线的乘积等于两对对边乘积之和。
如下图所示,ABCD为圆内接四边形,则对角线AC与BD的乘积等于一对对边AB与CD的乘积加上另一对对边AD与BC的乘积,即AC·BD=AB·CD+AD·BC。
证明:
(1)如下图所示。不妨设∠ACB大于∠ACD(其实也无所谓,见下图图2,先不用管它)。于是,在∠ACB内作一个以点C为顶点、以CB为一边的∠BCE,使∠BCE=∠ACD(图(1)中的红色角)。
又由于∠CAD=∠CBE(同弧同侧的圆周角相等),所以三角形ACD与BCE相似。于是有AD : BE = AC : BC,即AD·BC=AC·BE(称为1式)。
(2)同理,如上图图(2)所示,三角形CDE与ABC相似。从而有CD : AC = DE : AB,即AB·CD=AC·DE(称为2式)。
(3)1式加上2式,即得AD·BC+AB·CD=AC·(BE+DE)=AC·BD。即
AC·BD=AB·CD+AD·BC证毕。
扩展资料
推广
托勒密不等式:凸四边形的两组对边乘积和不小于其对角线的乘积,取等号当且仅当共圆或共线。
简单的证明:复数恒等式:(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d),两边取模,
得不等式AC·BD≤|(a-b)(c-d)|+|(b-c)(a-d)|=AB·CD+BC·AD
推论
1、任意凸四边形ABCD,必有AC·BD≤AB·CD+AD·BC,当且仅当ABCD四点共圆时取等号。
2、托勒密定理的逆定理同样成立:一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这个凸四边形内接于一圆。
参考资料来源:百度百科-托勒密定理
一、(以下是推论的证明,托勒密定理可视作特殊情况。)
在任意凸四边形ABCD中(如右图),作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD,连接DE.
则△ABE∽△ACD
所以 BE/CD=AB/AC,即BE·AC=AB·CD (1)由△ABE∽△ACD得AD/AC=AE/AB,又∠BAC=∠EAD,
所以△ABC∽△AED.
BC/ED=AC/AD,即ED·AC=BC·AD (2)
(1)+(2),得
AC(BE+ED)=AB·CD+AD·BC
又因为BE+ED≥BD
(仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”)
复数证明
用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。 首先注意到复数恒等式: (a−b)(c−d) + (a−d)(b−c) = (a−c)(b−d) ,两边取模,运用三角不等式得。等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。 四点不限于同一平面。 平面上,托勒密不等式是三角不等式的反演形式。
二、
设ABCD是圆内接四边形。 在弦BC上,圆周角∠BAC = ∠BDC,而在AB上,∠ADB = ∠ACB。 在AC上取一点K,使得∠ABK = ∠CBD; 因为∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD,所以∠CBK = ∠ABD。 因此△ABK与△DBC相似,同理也有△ABD ~ △KBC。 因此AK/AB = CD/BD,且CK/BC = DA/BD; 因此AK·BD = AB·CD,且CK·BD = BC·DA; 两式相加,得(AK+CK)·BD = AB·CD + BC·DA; 但AK+CK = AC,因此AC·BD = AB·CD + BC·DA。证毕。
三、
托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.
证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.得AC:BC=AD:BP,AC·BP=AD·BC ①。又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.得AC:CD=AB:DP,AC·DP=AB·CD ②。①+②得 AC(BP+DP)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.
四、广义托勒密定理:设四边形ABCD四边长分别为a,b,c,d,两条对角线长分别为m、n,则有:
m2*n2=a2*c2+b2*d2-2abcd*cos(A+C)