已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)求

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时... 已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?
一定要证明第三个问!!前两个问可不证明。
展开
klxfxcx
2011-04-28 · TA获得超过2612个赞
知道小有建树答主
回答量:275
采纳率:30%
帮助的人:127万
展开全部
解:(1)证明:在Rt△FCD中,

∵G为DF的中点,

∴ CG= FD.

同理,在Rt△DEF中,

EG= FD.

∴ CG=EG.

(2)(1)中结论仍然成立,即EG=CG.

证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.

在△DAG与△DCG中,

∵ AD=CD,∠ADG=∠CDG,DG=DG,

∴ △DAG≌△DCG.

∴ AG=CG.

在△DMG与△FNG中,

∵ ∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,

∴ △DMG≌△FNG.

∴ MG=NG

在矩形AENM中,AM=EN.

在Rt△AMG 与Rt△ENG中,

∵ AM=EN, MG=NG,

∴ △AMG≌△ENG.

∴ AG=EG.

∴ EG=CG.

证法二:延长CG至M,使MG=CG,

连接MF,ME,EC

在△DCG 与△FMG中,

∵FG=DG,∠MGF=∠CGD,MG=CG,

∴△DCG ≌△FMG.

∴MF=CD,∠FMG=∠DCG.

∴MF‖CD‖AB

∴ .

在Rt△MFE 与Rt△CBE中,

∵ MF=CB,EF=BE,

∴△MFE ≌△CBE.

∴ .

∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°.

∴ △MEC为直角三角形.

∵ MG = CG,

∴ EG= MC.

∴ .

(3)(1)中的结论仍然成立,

即EG=CG.其他的结论还有:EG⊥CG.
追问
(3)过程。
追答
:(3)过F做CD的平行线并延长CG交与M点,连EM,过F作FN垂直于AB于N,由于G为FD中点,CD=FM OC=FM,BE=EF,∠EFM=∠EBC,则∴△EFM≌△EBC。∠FEC+∠BEC=90°,则∠FEC+∠FEM=90°,即∠MEC=90°,G为CM中点,有EG=CG
青WANGHUI
2012-10-17 · TA获得超过3536个赞
知道答主
回答量:266
采纳率:0%
帮助的人:106万
展开全部

延长CG至M,使MG=CG, 连接MF,ME,EC, 在△DCG与△FMG中, ∵FG=DG,∠MGF=∠CGD,MG=CG, ∴△DCG≌△FMG. ∴MF=CD,∠FMG=∠DCG, ∴MF∥CD∥AB, ∴EF⊥MF. 在Rt△MFE与Rt△CBE中, ∵MF=CB,EF=BE, ∴△MFE≌△CBE ∴∠MEF=∠CEB. ∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°, ∴△MEC为直角三角形. ∵MG=CG, ∴EG= 1 2 MC, ∴EG=CG. 

(3)(1)中的结论仍然成立,

即EG=CG.其他的结论还有:EG⊥CG.

过F做CD的平行线并延长CG交与M点,连EM,过F作FN垂直于AB于N,由于G为FD中点,CD=FM OC=FM,BE=EF,∠EFM=∠EBC,则∴△EFM≌△EBC。∠FEC+∠BEC=90°,则∠FEC+∠FEM=90°,即∠MEC=90°,G为CM中点,有EG=CG

祝学习进步

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
白痴肉
2012-05-23
知道答主
回答量:15
采纳率:0%
帮助的人:6.5万
展开全部

(1)证明:在Rt△FCD中, ∵G为DF的中点, ∴CG= 1 2 FD, 同理,在Rt△DEF中, EG= 1 2 FD, ∴CG=EG.  (2)解:(1)中结论仍然成立,即EG=CG. 证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点. 在△DAG与△DCG中, ∵AD=CD,∠ADG=∠CDG,DG=DG, ∴△DAG≌△DCG, ∴AG=CG; 在△DMG与△FNG中, ∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG, ∴△DMG≌△FNG, ∴MG=NG; 在矩形AENM中,AM=EN, 在△AMG与△ENG中, ∵AM=EN,∠AMG=∠ENG,MG=NG, ∴△AMG≌△ENG, ∴AG=EG, ∴EG=CG. 证法二:延长CG至M,使MG=CG, 连接MF,ME,EC, 在△DCG与△FMG中, ∵FG=DG,∠MGF=∠CGD,MG=CG, ∴△DCG≌△FMG. ∴MF=CD,∠FMG=∠DCG, ∴MF∥CD∥AB, ∴EF⊥MF. 在Rt△MFE与Rt△CBE中, ∵MF=CB,EF=BE, ∴△MFE≌△CBE ∴∠MEF=∠CEB. ∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°, ∴△MEC为直角三角形. ∵MG=CG, ∴EG= 1 2 MC, ∴EG=CG.  (3)解:(1)中的结论仍然成立. 即EG=CG.其他的结论还有:EG⊥CG.

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
tianbiandeniao
2012-06-29
知道答主
回答量:18
采纳率:0%
帮助的人:7.9万
展开全部

(3)解:(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形,∵G为CM中点,∴EG=CG,EG⊥CG.

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
tuxingyu022
2012-11-11 · TA获得超过454个赞
知道答主
回答量:257
采纳率:0%
帮助的人:91.6万
展开全部
(1)证明:在Rt△FCD中,
∵G为DF的中点,
∴CG=1/2FD,
同理,在Rt△DEF中,
EG=1/2FD,
∴CG=EG.

(2)解:(1)中结论仍然成立,即EG=CG.
证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
在△DAG与△DCG中,
∵AD=CD,∠ADG=∠CDG,DG=DG,
∴△DAG≌△DCG,
∴AG=CG;
在△DMG与△FNG中,
∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,
∴△DMG≌△FNG,
∴MG=NG;
在矩形AENM中,AM=EN,
在△AMG与△ENG中,
∵AM=EN,∠AMG=∠ENG,MG=NG,
∴△AMG≌△ENG,
∴AG=EG,
∴EG=CG.
证法二:延长CG至M,使MG=CG,
连接MF,ME,EC,
在△DCG与△FMG中,
∵FG=DG,∠MGF=∠CGD,MG=CG,
∴△DCG≌△FMG.
∴MF=CD,∠FMG=∠DCG,
∴MF∥CD∥AB,
∴EF⊥MF.
在Rt△MFE与Rt△CBE中,
∵MF=CB,EF=BE,
∴△MFE≌△CBE
∴∠MEF=∠CEB.
∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,
∴△MEC为直角三角形.
∵MG=CG,
∴EG=1/2MC ,
∴EG=CG.

(3)解:(1)中的结论仍然成立.理由如下:
过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.
由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,
又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC
∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,
∴△MEC是等腰直角三角形,
∵G为CM中点,
∴EG=CG,EG⊥CG.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(9)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式