已知函数f(x)=ax^3+bx^2+cx

(1)记g(x)=f(x)/x+(k+1)lnx,求y=(x)的单调区间(2)在(1)的条件下,当k=2时,若函数g(x)的图像在直线y=x+m的下方,求m的取值范围。y... (1)记g(x)=f(x)/x+(k+1)lnx,求y=(x)的单调区间
(2)在(1)的条件下,当k=2时,若函数g(x)的图像在直线y=x+m的下方,求m的取值范围。
y=g(x)
展开
你与佛有缘
2011-04-26 · TA获得超过903个赞
知道小有建树答主
回答量:264
采纳率:100%
帮助的人:79.8万
展开全部
(1) y=g(x)=ax^2+bx+(k+1)lnx+c则,
g'(x)=2ax+b+(k+1)/x=[2ax^2+bx+(k+1)]/x
令g'(x)>=0,(递增区间)
1,当a=0,b>=0k+1=0时,解得x属于R,当a=0,b=0,k+1<0,解得x<0
2,a=0,b>0,k+1<0时 解得 x>=-k+1)/b或x<=0
当a=0,b>0,k+1>0时 解得 x>=0或x<=-(k+1)/b
当a=0,b<0 k+1<0解得 -(k+1)/b=<x<0
当a=0,b<0 k+1>0解得 0<x<=-(k+1)/b
3,当a>0,b^2 - 8a(k+1)<=0,解得x>0
a>0,b^2 - 8a(k+1)>0
当(-b-根号b^2 - 8a(k+1))/4a>0,解得 0<x<=(-b-根号b^2 - 8a(k+1))/4a或x>=(-b+根号b^2 - 8a(k+1))/4a
当(-b+根号b^2 - 8a(k+1))/4a<0,解得 (-b-根号b^2 - 8a(k+1))/4a=<x<=(-b+根号b^2 - 8a(k+1))/4a或x>0
当(-b+根号b^2 - 8a(k+1))/4a>0>(-b-根号b^2 - 8a(k+1))/4a 解得 (-b-根号b^2 - 8a(k+1))/4a=<x<0,或x>(-b+根号b^2 - 8a(k+1))/4a
当a<0,b^2 - 8a(k+1)<=0解得x<0
当a<0,b^2 - 8a(k+1)>0,(-b-根号b^2 - 8a(k+1))/4a>0,解得x<0或(-b-根号b^2 - 8a(k+1))/4a<=x<=(-b+根号b^2 - 8a(k+1))/4a
当(-b+根号b^2 - 8a(k+1))/4a<0,解得x<=(-b-根号b^2 - 8a(k+1))/4a或(-b+根号b^2 - 8a(k+1))/4a<=x<0,
当(-b+根号b^2 - 8a(k+1))/4a>0>(-b-根号b^2 - 8a(k+1))/4a 解得x<=(-b+根号b^2 - 8a(k+1))/4a或0<x<=(-b+根号b^2 - 8a(k+1))/4a
当a>0,(-b+根号b^2 - 8a(k+1))/4a=0,解得x>=(-b-根号b^2 - 8a(k+1))/4a
当a>0,(-b-根号b^2 - 8a(k+1))/4a=0,解得x>=(-b+根号b^2 - 8a(k+1))/4a
当a<0(-b+根号b^2 - 8a(k+1))/4a=0,解得x<=(-b-根号b^2 - 8a(k+1))/4a
当a<0,(-b-根号b^2 - 8a(k+1))/4a=0解得x<=(-b+根号b^2 - 8a(k+1))/4a
令g'x<=0(递减区间)略。
(2)g(x)=ax^2+bx+3lnx+c
若函数g(x)的图像在直线y=x+m的下方,充要条件是y的最大值》=g(x)最小值。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
yj12384568yj
2011-04-25
知道答主
回答量:31
采纳率:0%
帮助的人:23.3万
展开全部
y=(x)是什么啊?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式