一道比较难的初中数学题,高手看看能否帮忙解答下
在四边形ABCD中,AD‖BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD,AB=kAC。试证明AE=EF。...
在四边形ABCD中,AD‖BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD,AB=kAC。试证明AE=EF。
展开
展开全部
解:(1)AE=EF;
证明:如图:过点E作EH‖AB交AC于点H.
则∠BAC+∠AHE=180°,∠BAC=∠CHE,
∵AB=BC=AC,∴∠BAC=∠ACB=60°,
∴∠CHE=∠ACB=∠B=60°,
∴EH=EC.
∵AD‖BC,∴∠FCE=180°-∠B=120°,
又∠AHE=180°-∠BAC=120°,
∴∠AHE=∠FCE,
∵∠AOE=∠COF,∠AEF=∠ACF,∴∠EAC=∠EFC,
∴△AEH≌△FEC,
∴AE=EF;
(2)猜想:(1)中的结论是没有发生变化.
证明:如图:过点E作EH‖AB交AC于点H,则∠BAC+∠AHE=180°,∠BAC=∠CHE,
∵AB=BC∴∠BAC=∠ACB
∴∠CHE=∠ACB∴EH=EC
∵AD‖BC∴∠D+∠DCB=180°.
∵∠BAC=∠D∴∠AHE=∠DCB=∠ECF
∵∠AOE=∠COF,∠AEF=∠ACF,
∴∠EAC=∠EFC,
∴△AEH≌△FEC,
∴AE=EF;
(3)猜想:(1)中的结论发生变化.
证明:过点E作EH‖AB交AC于点H.
由(2)可得∠EAC=∠EFC,
∠AHE=∠DCB=∠ECF,
∴△AEH∽△FEC,
∴AE:EF=EH:EC,
∵EH‖AB,
∴△ABC∽△HEC,
∴EH:EC=AB:BC=k,
∴AE:EF=k,
∴AE=kEF.
证明:如图:过点E作EH‖AB交AC于点H.
则∠BAC+∠AHE=180°,∠BAC=∠CHE,
∵AB=BC=AC,∴∠BAC=∠ACB=60°,
∴∠CHE=∠ACB=∠B=60°,
∴EH=EC.
∵AD‖BC,∴∠FCE=180°-∠B=120°,
又∠AHE=180°-∠BAC=120°,
∴∠AHE=∠FCE,
∵∠AOE=∠COF,∠AEF=∠ACF,∴∠EAC=∠EFC,
∴△AEH≌△FEC,
∴AE=EF;
(2)猜想:(1)中的结论是没有发生变化.
证明:如图:过点E作EH‖AB交AC于点H,则∠BAC+∠AHE=180°,∠BAC=∠CHE,
∵AB=BC∴∠BAC=∠ACB
∴∠CHE=∠ACB∴EH=EC
∵AD‖BC∴∠D+∠DCB=180°.
∵∠BAC=∠D∴∠AHE=∠DCB=∠ECF
∵∠AOE=∠COF,∠AEF=∠ACF,
∴∠EAC=∠EFC,
∴△AEH≌△FEC,
∴AE=EF;
(3)猜想:(1)中的结论发生变化.
证明:过点E作EH‖AB交AC于点H.
由(2)可得∠EAC=∠EFC,
∠AHE=∠DCB=∠ECF,
∴△AEH∽△FEC,
∴AE:EF=EH:EC,
∵EH‖AB,
∴△ABC∽△HEC,
∴EH:EC=AB:BC=k,
∴AE:EF=k,
∴AE=kEF.
展开全部
AB=kAC k是什么?
追问
k是未知数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:
设AC与EF的交点为O, 连接AF
∵∠AEF=∠ACD,∠AOE=∠COF
∴△AOE∽△COF
∴AO/OE=OF/OC
∵∠AOF=∠COE
∴△AOF∽△EOC
∴∠AFE=∠ACB
∵AD‖BC
∴∠CAD=∠ACB
∵∠BAC=∠D
∴∠B=∠ACD
∴∠B=∠AEF
∴△ABC∽△AEF
∴AE/EF=AB/BC=k
∴AE=kEF
当k=1时,AE=EF
设AC与EF的交点为O, 连接AF
∵∠AEF=∠ACD,∠AOE=∠COF
∴△AOE∽△COF
∴AO/OE=OF/OC
∵∠AOF=∠COE
∴△AOF∽△EOC
∴∠AFE=∠ACB
∵AD‖BC
∴∠CAD=∠ACB
∵∠BAC=∠D
∴∠B=∠ACD
∴∠B=∠AEF
∴△ABC∽△AEF
∴AE/EF=AB/BC=k
∴AE=kEF
当k=1时,AE=EF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询