已知|a|=4,|b|=3,a,b的夹角为120°
1若c=a+b,d=2a+b,求c·d2若c=a+2b,d=2a+kb,当c⊥a时,求k的值(a,b,c,d均为向量)...
1若c=a+b,d=2a+b,求c·d
2若c=a+2b,d=2a+kb,当c⊥a时,求k的值
(a,b,c,d均为向量) 展开
2若c=a+2b,d=2a+kb,当c⊥a时,求k的值
(a,b,c,d均为向量) 展开
1个回答
展开全部
|a|=4,|b|=3,a,b的夹角为120°,则
a^2 = |a|^2 =16,
b^2 = |b|^2 = 9,ab= |a||b|cos120°= 4*3 * (-1/2) = -6
1、c·d = (a+b)·(2a+b) = 2a^2 + 3ab+ b^2 =2*16 -3*6 + 9 = 32 - 18 + 9 = 23
2、当c⊥a时?! 应该是“当c⊥d时”吧
c⊥d,c·d = (a+2b)·(2a+kb) = 2a^2 + (4+k)ab + 2kb^2 = 0,
即 2*16 - 6(4+k) + 2*9*k =0
32 -24 - 6k +18k=0,则12k= -8,k= -2/3
a^2 = |a|^2 =16,
b^2 = |b|^2 = 9,ab= |a||b|cos120°= 4*3 * (-1/2) = -6
1、c·d = (a+b)·(2a+b) = 2a^2 + 3ab+ b^2 =2*16 -3*6 + 9 = 32 - 18 + 9 = 23
2、当c⊥a时?! 应该是“当c⊥d时”吧
c⊥d,c·d = (a+2b)·(2a+kb) = 2a^2 + (4+k)ab + 2kb^2 = 0,
即 2*16 - 6(4+k) + 2*9*k =0
32 -24 - 6k +18k=0,则12k= -8,k= -2/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询