机械翻译
V.CONCLUSIONSANDFUTURERESEARCHDuetoeverincreasingrequirementsonfuelefficiency,emissio...
V. CONCLUSIONS AND FUTURE RESEARCH
Due to ever increasing requirements on fuel efficiency,
emissions and drivability, the complexity of powertrains is
expected to increase further in the future. In order to deal
with this complexity level, integrated powertrain control is
needed to ensure system robustness and reduce the required
development resources.
Integrated powertrain control also allows synergistic
optimization between powertrain sub-systems to meet future
performance requirements. The potential of synergy between
a diesel engine, hybrid driveline and DPF aftertreatment has
been examined. For this application, three cases have been
examined to determine the effects on a heavy-duty hybrid
distribution vehicle:
1. By using regenerative braking energy for electric DPF
heating, the fuel penalty associated with DPF
regeneration can be completely avoided when using an
18 kW heater. However, this would lead to excessive
battery throughput. Under realistic driving conditions,
this fuel penalty can be reduced by 18%.
2. By electric heating of the DOC only, the DPF
regeneration range can be extended down to engine idle
without other additional measures. An electrical power
of 1.9kW suffices, which is also within the capability of
conventional vehicles.
3. An idle-stop strategy prevents cool-down of a hot DPF,
especially after high load driving. Improvements of up
to 50°C have been shown. This can be advantageous to
reduce the energy required for regeneration and reduce
thermal cycling.
Further research is recommended into the effects of the
presented strategies on other hybrid functions, along with
demonstration of the combined effectiveness on actual
driving cycles. Other strategies representing even tighter
integration between powertrain systems should also beevaluated for potential. For Integrated Powertrain Control,
research will concentrate on the development of total energy
concepts and advanced emission management for diesel
engines with both an SCR and DPF system for emission
control and CO2 reduction. For this application, hybridassisted
thermal management is of special interest. 展开
Due to ever increasing requirements on fuel efficiency,
emissions and drivability, the complexity of powertrains is
expected to increase further in the future. In order to deal
with this complexity level, integrated powertrain control is
needed to ensure system robustness and reduce the required
development resources.
Integrated powertrain control also allows synergistic
optimization between powertrain sub-systems to meet future
performance requirements. The potential of synergy between
a diesel engine, hybrid driveline and DPF aftertreatment has
been examined. For this application, three cases have been
examined to determine the effects on a heavy-duty hybrid
distribution vehicle:
1. By using regenerative braking energy for electric DPF
heating, the fuel penalty associated with DPF
regeneration can be completely avoided when using an
18 kW heater. However, this would lead to excessive
battery throughput. Under realistic driving conditions,
this fuel penalty can be reduced by 18%.
2. By electric heating of the DOC only, the DPF
regeneration range can be extended down to engine idle
without other additional measures. An electrical power
of 1.9kW suffices, which is also within the capability of
conventional vehicles.
3. An idle-stop strategy prevents cool-down of a hot DPF,
especially after high load driving. Improvements of up
to 50°C have been shown. This can be advantageous to
reduce the energy required for regeneration and reduce
thermal cycling.
Further research is recommended into the effects of the
presented strategies on other hybrid functions, along with
demonstration of the combined effectiveness on actual
driving cycles. Other strategies representing even tighter
integration between powertrain systems should also beevaluated for potential. For Integrated Powertrain Control,
research will concentrate on the development of total energy
concepts and advanced emission management for diesel
engines with both an SCR and DPF system for emission
control and CO2 reduction. For this application, hybridassisted
thermal management is of special interest. 展开
2个回答
展开全部
v .结论和未来的研究方向
由于不断增加的要求,分析了燃料的使用效率,排放和动力性,复杂的,powertrains预计将进一步增加,在未来的。摘要针对与上述的复杂性,综合动力总成控制水平才能确保系统的鲁棒性,降低了要求
开发的资源。综合动力总成控制也允许拮抗作用优化子系统之间的动力总成迎接未来性能要求。之间的潜在优势的柴油机、混合动力传动系统和后处理后处理被检验。该应用程序已经3例检查确定影响重型的混合体
配送车辆:
1。利用再生制动能量用于电动后处理加热、燃料后处理点球联系在一起再生可以完全避免当使用一个18千瓦加热器。然而,这将导致过量电池的吞吐量。现实的驾驶条件下,这种燃料点球可以降低18%。
2。采用电加热的方式,医生只后处理再生范围可以扩展到引擎闲着没有其他附加措施。一个电力
够的,也是1.9kW内的能力传统的车辆。
3。一个idle-stop策略可以用来预防冷却的热后处理,特别是在高负荷的驾驶。改进的至50°C已经被证明。这可能是有利的降低能源再生和减少所需热循环。进一步的研究推荐进效果的影响提出了混合策略对其他功能,随着演示实验的结合实际效果循环工况。其他策略代表甚至抓得更紧了
动力总成系统整合beevaluated之间也应该为潜力。综合动力总成控制,研究将集中力量发展的总能量排放管理的概念和先进柴油既是一种晶闸管、发动机排放后处理系统
控制和减少二氧化碳的减少。为这个应用程序,hybridassisted热管理特别有兴趣。
由于不断增加的要求,分析了燃料的使用效率,排放和动力性,复杂的,powertrains预计将进一步增加,在未来的。摘要针对与上述的复杂性,综合动力总成控制水平才能确保系统的鲁棒性,降低了要求
开发的资源。综合动力总成控制也允许拮抗作用优化子系统之间的动力总成迎接未来性能要求。之间的潜在优势的柴油机、混合动力传动系统和后处理后处理被检验。该应用程序已经3例检查确定影响重型的混合体
配送车辆:
1。利用再生制动能量用于电动后处理加热、燃料后处理点球联系在一起再生可以完全避免当使用一个18千瓦加热器。然而,这将导致过量电池的吞吐量。现实的驾驶条件下,这种燃料点球可以降低18%。
2。采用电加热的方式,医生只后处理再生范围可以扩展到引擎闲着没有其他附加措施。一个电力
够的,也是1.9kW内的能力传统的车辆。
3。一个idle-stop策略可以用来预防冷却的热后处理,特别是在高负荷的驾驶。改进的至50°C已经被证明。这可能是有利的降低能源再生和减少所需热循环。进一步的研究推荐进效果的影响提出了混合策略对其他功能,随着演示实验的结合实际效果循环工况。其他策略代表甚至抓得更紧了
动力总成系统整合beevaluated之间也应该为潜力。综合动力总成控制,研究将集中力量发展的总能量排放管理的概念和先进柴油既是一种晶闸管、发动机排放后处理系统
控制和减少二氧化碳的减少。为这个应用程序,hybridassisted热管理特别有兴趣。
展开全部
将英语译成中文
五,结论和未来研究
由于不断增加燃油效率的要求,
排放量和驾驶性,复杂性的动力系统
预计在未来进一步增加。为了应对
这种复杂程度,综合动力总成控制
需要确保系统的稳定性,减少了所需
开发资源。
集成动力总成控制还允许协同
动力总成之间子系统优化,以满足未来
性能要求。之间潜在的协同作用
柴油发动机,混合动力传动系统和DPF后处理有
被审查。对于这种应用,三起案件已
检查,以确定在重型混合动力的影响
配送车辆:
1。通过使用DPF的再生制动能量电
取暖,燃料与DPF的相关处罚
再生时,可完全避免使用
18千瓦的加热器。但是,这会导致过度
电池的吞吐量。在实际行驶条件下,
这种燃料刑罚可减少了18%。
2。由商务部只,DPF的电加热
再生范围可扩展到发动机怠速
没有其他额外的措施。一个电力
对1.9kW就够了,这也是能力的内
传统车辆。
3。闲置的进站策略防止降温的一个热点数码相框,
特别是在高负荷驾驶。提升达
到50 ° C已被证明。这可能有利于
减少再生所需的能源,减少
热循环。
进一步的研究,建议把对的影响
提出的策略对其他混合功能,以及
合并后的实际效果演示
驾驶循环。代表其他战略更紧密
动力总成系统集成之间也应beevaluated的潜力。对于综合动力总成控制,
研究将集中在能源发展总
概念和先进的柴油排放管理
发动机,既是排放SCR和DPF系统
控制和减少二氧化碳排放量。对于这种应用,hybridassisted
热管理是特别感兴趣。
五,结论和未来研究
由于不断增加燃油效率的要求,
排放量和驾驶性,复杂性的动力系统
预计在未来进一步增加。为了应对
这种复杂程度,综合动力总成控制
需要确保系统的稳定性,减少了所需
开发资源。
集成动力总成控制还允许协同
动力总成之间子系统优化,以满足未来
性能要求。之间潜在的协同作用
柴油发动机,混合动力传动系统和DPF后处理有
被审查。对于这种应用,三起案件已
检查,以确定在重型混合动力的影响
配送车辆:
1。通过使用DPF的再生制动能量电
取暖,燃料与DPF的相关处罚
再生时,可完全避免使用
18千瓦的加热器。但是,这会导致过度
电池的吞吐量。在实际行驶条件下,
这种燃料刑罚可减少了18%。
2。由商务部只,DPF的电加热
再生范围可扩展到发动机怠速
没有其他额外的措施。一个电力
对1.9kW就够了,这也是能力的内
传统车辆。
3。闲置的进站策略防止降温的一个热点数码相框,
特别是在高负荷驾驶。提升达
到50 ° C已被证明。这可能有利于
减少再生所需的能源,减少
热循环。
进一步的研究,建议把对的影响
提出的策略对其他混合功能,以及
合并后的实际效果演示
驾驶循环。代表其他战略更紧密
动力总成系统集成之间也应beevaluated的潜力。对于综合动力总成控制,
研究将集中在能源发展总
概念和先进的柴油排放管理
发动机,既是排放SCR和DPF系统
控制和减少二氧化碳排放量。对于这种应用,hybridassisted
热管理是特别感兴趣。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询