多边形内角和是多少
9个回答
展开全部
内角和是(边数减2)乘以180度。
内角和是一个数学名词,多边形的所有内角度数总和叫做内角和。
多边形如果边数不变,不管怎么改变形状,其多边形的内角和都是相等的,定义内角为顶点沿不同切方向的夹角,已知一个多边形的内角和,那么它的边数等于内角和除以180度加2。
内角和是一个数学名词,多边形的所有内角度数总和叫做内角和。
多边形如果边数不变,不管怎么改变形状,其多边形的内角和都是相等的,定义内角为顶点沿不同切方向的夹角,已知一个多边形的内角和,那么它的边数等于内角和除以180度加2。
展开全部
定理:多边形内角和定理n边形的内角的和等于: (n - 2)×180°(n大于等于3且n为整数)
多边形内角和
已知正多边形内角度数则其边数为:360°÷(180°-内角度数)
推论
任意正多边形的外角和=360°
正多边形任意两条相邻边连线所构成的三角形是等腰三角形
多边形的内角和
定义
〔n-2〕×180°
多边形内角和定理证明
证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形.
因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°
所以n边形的内角和是n·180°-2×180°=(n-2)·180°.
即n边形的内角和等于(n-2)×180°.
证法二:连结多边形的任一顶点A1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三角形.
因为这(n-2)个三角形的内角和都等于(n-2)·180°
所以n边形的内角和是(n-2)×180°.
证法三:在n边形的任意一边上任取一点P,连结P点与其不相邻的其它各顶点的线段可以把n边形分成(n-1)个三角形,
这(n-1)个三角形的内角和等于(n-1)·180°
以P为公共顶点的(n-1)个角的和是180°
所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°.
重点:多边形内角和定理及推论的应用。
难点:多边形内角和定理的推导及运用方程的思想来解决多边形内、外角的计算。
多边形内角和
已知正多边形内角度数则其边数为:360°÷(180°-内角度数)
推论
任意正多边形的外角和=360°
正多边形任意两条相邻边连线所构成的三角形是等腰三角形
多边形的内角和
定义
〔n-2〕×180°
多边形内角和定理证明
证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形.
因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°
所以n边形的内角和是n·180°-2×180°=(n-2)·180°.
即n边形的内角和等于(n-2)×180°.
证法二:连结多边形的任一顶点A1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三角形.
因为这(n-2)个三角形的内角和都等于(n-2)·180°
所以n边形的内角和是(n-2)×180°.
证法三:在n边形的任意一边上任取一点P,连结P点与其不相邻的其它各顶点的线段可以把n边形分成(n-1)个三角形,
这(n-1)个三角形的内角和等于(n-1)·180°
以P为公共顶点的(n-1)个角的和是180°
所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°.
重点:多边形内角和定理及推论的应用。
难点:多边形内角和定理的推导及运用方程的思想来解决多边形内、外角的计算。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(n-2)180
推论
任意正多边形的外角和=360°
正多边形任意两条相邻边连线所构成的三角形是等腰三角形
多边形的内角和
定义
〔n-2〕×180°
多边形内角和定理证明
证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形.
因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°
所以n边形的内角和是n·180°-2×180°=(n-2)·180°.
即n边形的内角和等于(n-2)×180°.
证法二:连结多边形的任一顶点A1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三角形.
因为这(n-2)个三角形的内角和都等于(n-2)·180°
所以n边形的内角和是(n-2)×180°.
证法三:在n边形的任意一边上任取一点P,连结P点与其不相邻的其它各顶点的线段可以把n边形分成(n-1)个三角形,
这(n-1)个三角形的内角和等于(n-1)·180°
以P为公共顶点的(n-1)个角的和是180°
所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°.
重点:多边形内角和定理及推论的应用。
难点:多边形内角和定理的推导及运用方程的思想来解决多边形内、外角的计算。
推论
任意正多边形的外角和=360°
正多边形任意两条相邻边连线所构成的三角形是等腰三角形
多边形的内角和
定义
〔n-2〕×180°
多边形内角和定理证明
证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形.
因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°
所以n边形的内角和是n·180°-2×180°=(n-2)·180°.
即n边形的内角和等于(n-2)×180°.
证法二:连结多边形的任一顶点A1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三角形.
因为这(n-2)个三角形的内角和都等于(n-2)·180°
所以n边形的内角和是(n-2)×180°.
证法三:在n边形的任意一边上任取一点P,连结P点与其不相邻的其它各顶点的线段可以把n边形分成(n-1)个三角形,
这(n-1)个三角形的内角和等于(n-1)·180°
以P为公共顶点的(n-1)个角的和是180°
所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°.
重点:多边形内角和定理及推论的应用。
难点:多边形内角和定理的推导及运用方程的思想来解决多边形内、外角的计算。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(N-2)*180,其中N为边数,比如三角形内角总和为180度,以后第增加一条边,就增加180度
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询