几何超难题!

设P是五边形ABCDE外接圆上任一点,求证:P至五边形ABCDE各对角线的距离之积等于P至各边的距离之积。... 设P是五边形ABCDE外接圆上任一点,求证:P至五边形ABCDE各对角线的距离之积等于P至各边的距离之积。 展开
千屾暮雪
2011-04-28
知道答主
回答量:18
采纳率:0%
帮助的人:0
展开全部
证明:设P点至五边形边AB,BC,CD,DE,EA的距离分别为h1,h2,h3,h4,h5;
P点至五边形各对角线AC,AD,BD,BE,CE的距离分别为m1,m2,m3,m4,m5。
令R为五边形ABCDE外接圆的半径。
根据简单几何定理:三角形两边之积等于第三边上的高与外接圆直径之积。
在ΔPAB中,得:
PA*PB=2R*h1……(1-1)
同理可得:
PB*PC=2R*h2……(1-2)
PC*PD=2R*h3……(1-3)
PD*PE=2R*h4……(1-4)
PE*PA=2R*h5……(1-5)
在ΔPAC中,得:
PA*PC=2R*m1……(2-1)
同理可得:
PA*PD=2R*m2……(2-2)
PB*PD=2R*m3……(2-3)
PB*PE=2R*m4……(2-4)
PC*PE=2R*m5……(2-5)
(1-1)*(1-2)*(1-3)*(1-4)*(1-5)得:
h1*h2*h3*h4*h5=(PA*PB*PC*PD*PE)^2/(2R)^5 (3)
(1-1)*(1-2)*(1-3)*(1-4)*(1-5)得:
m1*m2*m3*m4*m5=(PA*PB*PC*PD*PE)^2/(2R)^5 (4)
所以则有:h1*h2*h3*h4*h5=m1*m2*m3*m4*m5。
证明完毕!

备注: 实际上我们有更一般结论:
定理:圆内接n边形(n≥4) 外接圆上任一点至各条对角线的距离之积的2/(n-3) 次方等于该点至各边的距离之积。
定理证明与上述证明方法相同,关键要注意量纲,n边形有n条边和n(n-3)/2条对角线。
来自:求助得到的回答
景联文科技
2024-06-11 广告
杭州景联文科技有限公司专注于大模型数据集的研发与应用。我们深知,在人工智能飞速发展的时代,数据是驱动模型优化的核心动力。因此,我们致力于构建丰富、多元的大模型数据集,涵盖各行各业,为AI模型提供充足的“养分”。通过不断积累与优化,我们的数据... 点击进入详情页
本回答由景联文科技提供
kang0000007
2011-04-28 · TA获得超过1314个赞
知道小有建树答主
回答量:980
采纳率:50%
帮助的人:292万
展开全部
设P点至五边形边AB,BC,CD,DE,EA的距离分别为h1,h2,h3,h4,h5;
P点至五边形各对角线AC,AD,BD,BE,CE的距离分别为m1,m2,m3,m4,m5。
令R为五边形ABCDE外接圆的半径。
根据简单几何定理:三角形两边之积等于第三边上的高与外接圆直径之积。
在ΔPAB中,得:
PA*PB=2R*h1……(1-1)
同理可得:
PB*PC=2R*h2……(1-2)
PC*PD=2R*h3……(1-3)
PD*PE=2R*h4……(1-4)
PE*PA=2R*h5……(1-5)
在ΔPAC中,得:
PA*PC=2R*m1……(2-1)
同理可得:
PA*PD=2R*m2……(2-2)
PB*PD=2R*m3……(2-3)
PB*PE=2R*m4……(2-4)
PC*PE=2R*m5……(2-5)
(1-1)*(1-2)*(1-3)*(1-4)*(1-5)得:
h1*h2*h3*h4*h5=(PA*PB*PC*PD*PE)^2/(2R)^5 (3)
(1-1)*(1-2)*(1-3)*(1-4)*(1-5)得:
m1*m2*m3*m4*m5=(PA*PB*PC*PD*PE)^2/(2R)^5 (4)
所以则有:h1*h2*h3*h4*h5=m1*m2*m3*m4*m5。
证明完毕!

一般结论:
定理:圆内接n边形(n≥4) 外接圆上任一点至各条对角线的距离之积的2/(n-3) 次方等于该点至各边的距离之积。
定理证明与上述证明方法相同,关键要注意量纲,n边形有n条边和n(n-3)/2条对角线。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式