线性代数相关证明 谢谢
Supposethat,foragivenmatrixA,thereisanonzerovectorxsuchthatAx=0.Showthatthereisalsoan...
Suppose that, for a given matrix A, there is a nonzero vector x such that Ax=0. Show that there is also a nonzero vector y such that A*y=0
展开
3个回答
展开全部
证明: 由已知存在非零向量 x 满足 AX=0
取 y = 2x, 则 y ≠ x,
且 Ay = A(2x) = 2Ax = 0
即找到了另一个非零向量y满足 Ay = 0#
上面把A*y=0 以为是Ay=0了.
若A*是伴随矩阵, 就应该这样证明:
证: 由已知存在非零向量 x 满足 Ax=0, 所以齐次线性方程组 AX=0 有非零解.
所以 |A| = 0. (这是AX=0 有非零解的充分必要条件)
所以 |A*| = |A|^(n-1) = 0 (这是个知识点)
所以 A*X = 0 有非零解.
所以存在非零向量y满足 A*y = 0.
取 y = 2x, 则 y ≠ x,
且 Ay = A(2x) = 2Ax = 0
即找到了另一个非零向量y满足 Ay = 0#
上面把A*y=0 以为是Ay=0了.
若A*是伴随矩阵, 就应该这样证明:
证: 由已知存在非零向量 x 满足 Ax=0, 所以齐次线性方程组 AX=0 有非零解.
所以 |A| = 0. (这是AX=0 有非零解的充分必要条件)
所以 |A*| = |A|^(n-1) = 0 (这是个知识点)
所以 A*X = 0 有非零解.
所以存在非零向量y满足 A*y = 0.
更多追问追答
追问
说实话 我看不太懂中文术语 题就是这么个题 是我们作业 刚学。。。
追答
Proof: For there is a nonzero vector x such that Ax=0, So the equation AX=0 has nonzero solution.
So the rank of A is less than n.
So the rank of A* (Adjoint matrix of A) is less than n.
So the equation A*X=0 has a nonzero solution y.
then y is the nonzero vector satisfy A*y = 0.
展开全部
因为Ax=0有非零解
所以A一定不是满秩的
所以A*一定不是满秩的
所以A*y=0有非零解
所以A一定不是满秩的
所以A*一定不是满秩的
所以A*y=0有非零解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Proof:
Lemma 1: Given a matrix M, a nonzero vector V, |M|=0 is a sufficient and necessary condition of MV=0.
Since AX=0(X≠0), we can know |A| = 0, therefore |A*| = |A|^(n-1) = 0, which implies we can choose a nonzero vector y such that A*y = 0.
Lemma 1: Given a matrix M, a nonzero vector V, |M|=0 is a sufficient and necessary condition of MV=0.
Since AX=0(X≠0), we can know |A| = 0, therefore |A*| = |A|^(n-1) = 0, which implies we can choose a nonzero vector y such that A*y = 0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询