![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
请解释高数定积分证明1、若f(x)在〔-a,a〕上连续且为偶函数,则 ∫(上a下-a)f(x)dx=2∫(上a下0)f(x)dx
求证1、若f(x)在〔-a,a〕上连续且为偶函数,则∫(上a下-a)f(x)dx=2∫(上a下0)f(x)dx2、若f(x)在〔-a,a〕上连续且为奇函数,则∫(上a下-...
求证1、若f(x)在〔-a,a〕上连续且为偶函数,则∫(上a下-a)f(x)dx=2∫(上a下0)f(x)dx
2、若f(x)在〔-a,a〕上连续且为奇函数,则∫(上a下-a)f(x)dx=0
证明:因为∫(上a下-a)f(x)dx=∫(上0下-a)f(x)dx+∫(上a下0)f(x)dx
对积分∫(上0下-a)f(x)dx做代换x=-t得
∫(上0下-a)f(x)dx=-∫(上0下a)f(-t)dt=∫(上a下0)f(-t)dt=∫(上a下0)f(-x)dx
于是∫(上a下-a)f(x)dx=∫(上a下0)f(-x)dx+∫(上a下0)f(x)dx
=∫(上a下0)〔f(x)+f(-x)〕dx
(1)若f(x)为偶函数,即f(-x)=f(x),则f(x)+f(-x)=2f(x)
从而∫(上a下-a)f(x)dx=2∫(上a下0)f(x)dx
(2)(1)若f(x)为奇函数,即f(-x)=-f(x),则f(x)+f(-x)=0
从而∫(上a下-a)f(x)dx=0
请问:其中关键的一步
对积分∫(上0下-a)f(x)dx做代换x=-t得
∫(上0下-a)f(x)dx=-∫(上0下a)f(-t)dt=∫(上a下0)f(-t)dt=∫(上a下0)f(-x)dx
看不懂,感觉根本不相等,特别是∫(上0下-a)f(x)dx=-∫(上0下a)f(-t)dt和
∫(上a下0)f(-t)dt=∫(上a下0)f(-x)dx是怎么等出来的? 展开
2、若f(x)在〔-a,a〕上连续且为奇函数,则∫(上a下-a)f(x)dx=0
证明:因为∫(上a下-a)f(x)dx=∫(上0下-a)f(x)dx+∫(上a下0)f(x)dx
对积分∫(上0下-a)f(x)dx做代换x=-t得
∫(上0下-a)f(x)dx=-∫(上0下a)f(-t)dt=∫(上a下0)f(-t)dt=∫(上a下0)f(-x)dx
于是∫(上a下-a)f(x)dx=∫(上a下0)f(-x)dx+∫(上a下0)f(x)dx
=∫(上a下0)〔f(x)+f(-x)〕dx
(1)若f(x)为偶函数,即f(-x)=f(x),则f(x)+f(-x)=2f(x)
从而∫(上a下-a)f(x)dx=2∫(上a下0)f(x)dx
(2)(1)若f(x)为奇函数,即f(-x)=-f(x),则f(x)+f(-x)=0
从而∫(上a下-a)f(x)dx=0
请问:其中关键的一步
对积分∫(上0下-a)f(x)dx做代换x=-t得
∫(上0下-a)f(x)dx=-∫(上0下a)f(-t)dt=∫(上a下0)f(-t)dt=∫(上a下0)f(-x)dx
看不懂,感觉根本不相等,特别是∫(上0下-a)f(x)dx=-∫(上0下a)f(-t)dt和
∫(上a下0)f(-t)dt=∫(上a下0)f(-x)dx是怎么等出来的? 展开
展开全部
答案不错,是2/3
主要运用奇函数在对称区间上积分为0
令F(x)=x·[f(x)+f(-x)],x∈(-1,1),则
F(-x)=(-x)·[f(-x)+f(x)]=-F(x)
∴F(x)是(-1,1)上的奇函数
∴∫(1,1) x·[f(x)+f(-x)+x]dx=∫(-1,1) [F(x)+x²]dx
=0+∫(-1.1) x²dx
=2∫(0,1) x²dx
=2·[x³/3]|(0,1)
=2/3
希望我的解答对你有所帮助 (*^__^*)
主要运用奇函数在对称区间上积分为0
令F(x)=x·[f(x)+f(-x)],x∈(-1,1),则
F(-x)=(-x)·[f(-x)+f(x)]=-F(x)
∴F(x)是(-1,1)上的奇函数
∴∫(1,1) x·[f(x)+f(-x)+x]dx=∫(-1,1) [F(x)+x²]dx
=0+∫(-1.1) x²dx
=2∫(0,1) x²dx
=2·[x³/3]|(0,1)
=2/3
希望我的解答对你有所帮助 (*^__^*)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |