在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F。若向量AC=a,向量BD=b,则向
在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F。若向量AC=a,向量BD=b,则向量AF=?...
在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F。若向量AC=a,向量BD=b,则向量AF=?
展开
展开全部
解:因为<AD>=<AO>+<OD>=(1/2)<a>+(1/2)<b>,<AE>=<AO>+<OE>=(1/2)<a>+(1/4)<b>
设<AF>=m<AE>=m[(1/2)<a>+(1/4)<b>],<DF>=n<FC>,则
因为<AF>-<AD>=n[<AC>-<AF>]
所以(n+1)<AF>=<AD>+n<AC>
因为<AF>=m<AE>=m[(1/2)<a>+(1/4)<b>],<AD>=<AO>+<OD>=(1/2)<a>+(1/2)<b>,
<AC>=<a>
所以(n+1)m[(1/2)<a>+(1/4)<b>]=(1/2)<a>+(1/2)<b>+n<a>
所以[(n+1)m(1/2)-(1/2)-n]<a>=[(1/2)-(n+1)m(1/4)]<b>
因为<a>、<b>不共线,要使上述等式成立,则<a>、<b>前系数都应为0
所以(n+1)m(1/2)-(1/2)-n=(1/2)-(n+1)m(1/4)=0
所以m=4/3,n=1/2
因为<AF>=m<AE>=m[(1/2)<a>+(1/4)<b>],m=4/3
所以<AF>=(2/3)<a>+(1/3)<b>
说明:其中<a>表示向量a,希望对你有所帮助。
设<AF>=m<AE>=m[(1/2)<a>+(1/4)<b>],<DF>=n<FC>,则
因为<AF>-<AD>=n[<AC>-<AF>]
所以(n+1)<AF>=<AD>+n<AC>
因为<AF>=m<AE>=m[(1/2)<a>+(1/4)<b>],<AD>=<AO>+<OD>=(1/2)<a>+(1/2)<b>,
<AC>=<a>
所以(n+1)m[(1/2)<a>+(1/4)<b>]=(1/2)<a>+(1/2)<b>+n<a>
所以[(n+1)m(1/2)-(1/2)-n]<a>=[(1/2)-(n+1)m(1/4)]<b>
因为<a>、<b>不共线,要使上述等式成立,则<a>、<b>前系数都应为0
所以(n+1)m(1/2)-(1/2)-n=(1/2)-(n+1)m(1/4)=0
所以m=4/3,n=1/2
因为<AF>=m<AE>=m[(1/2)<a>+(1/4)<b>],m=4/3
所以<AF>=(2/3)<a>+(1/3)<b>
说明:其中<a>表示向量a,希望对你有所帮助。
展开全部
郭敦顒回答:
这题尚缺少AB或AD或其它方面的具体条件,不能给出AF的具体值,但再设定一个相关数据后,可得出关于AF的关系式——
设∠AOD=θ,θ是向量OC与向量OD间的夹角,亦即向量AC与向量BD间的夹角,
点E是平行四边形ABCD对角线BD的四等分点,靠近D,AE的延长线交CD于F,
∴DE=(3/4)BD,DE:BE=1:3,
∵在△EFD与△EAB中,∠FED=∠AEB(对顶角),
∠ABD=∠BDF(平行则内错角相等),∠ABD=∠ABE,∠BDF=∠EDF(同角),
∴∠ABE=∠EDF,
∴△EFD∽△EAB,∴FE/AE=DF/AB=DE/BE=1/3,
∴DF=AB/3,
在△OCD中,OC=| a|/2,OD= |b|/2,∠AOD=θ,
按余弦定理:cosθ=(|a|²/4+|b|²/4-CD²)/(|a||b|/2),
(ab/2)cosθ=|a|²/4+|b|²/4-CD²,
CD²= |a|²/4+|b|²/4-(|a||b|/2)cosθ,
AB=CD=√[| a|²/4+|b|²/4-(|a||b|/2)cosθ];
同理求得BC²=|a|²/4+|b|²/4-(|a||b|/2)cos(180°-θ),
AD=BC=√[ |a|²/4+|b|²/4-(|a|b|/2)cos(180°-θ)]。
在△ACD中,cos∠ADC =(AD²+CD²-a²)/(2 AD•CD)
∴∠ADC= arc cos[(AD²+CD²-|a|²)/(2 AD•CD)]。
∵DF=AB/3,∴DF={√[ |a|²/4+|b|²/4-(|a||b|/2)cosθ]}/3,
在△AFD中,∠ADF =∠ADC(同角),
cos∠ADF =(AD²+DF²-AF²)/(2 AD•DF),
(2 AD•DF)cos∠ADF =AD²+DF²-AF²,
AF²=AD²+DF²-(2 AD•DF)cos∠ADF,
∴AF=√{AD²+DF²-(2 AD•DF)cos∠ADF}。
这题尚缺少AB或AD或其它方面的具体条件,不能给出AF的具体值,但再设定一个相关数据后,可得出关于AF的关系式——
设∠AOD=θ,θ是向量OC与向量OD间的夹角,亦即向量AC与向量BD间的夹角,
点E是平行四边形ABCD对角线BD的四等分点,靠近D,AE的延长线交CD于F,
∴DE=(3/4)BD,DE:BE=1:3,
∵在△EFD与△EAB中,∠FED=∠AEB(对顶角),
∠ABD=∠BDF(平行则内错角相等),∠ABD=∠ABE,∠BDF=∠EDF(同角),
∴∠ABE=∠EDF,
∴△EFD∽△EAB,∴FE/AE=DF/AB=DE/BE=1/3,
∴DF=AB/3,
在△OCD中,OC=| a|/2,OD= |b|/2,∠AOD=θ,
按余弦定理:cosθ=(|a|²/4+|b|²/4-CD²)/(|a||b|/2),
(ab/2)cosθ=|a|²/4+|b|²/4-CD²,
CD²= |a|²/4+|b|²/4-(|a||b|/2)cosθ,
AB=CD=√[| a|²/4+|b|²/4-(|a||b|/2)cosθ];
同理求得BC²=|a|²/4+|b|²/4-(|a||b|/2)cos(180°-θ),
AD=BC=√[ |a|²/4+|b|²/4-(|a|b|/2)cos(180°-θ)]。
在△ACD中,cos∠ADC =(AD²+CD²-a²)/(2 AD•CD)
∴∠ADC= arc cos[(AD²+CD²-|a|²)/(2 AD•CD)]。
∵DF=AB/3,∴DF={√[ |a|²/4+|b|²/4-(|a||b|/2)cosθ]}/3,
在△AFD中,∠ADF =∠ADC(同角),
cos∠ADF =(AD²+DF²-AF²)/(2 AD•DF),
(2 AD•DF)cos∠ADF =AD²+DF²-AF²,
AF²=AD²+DF²-(2 AD•DF)cos∠ADF,
∴AF=√{AD²+DF²-(2 AD•DF)cos∠ADF}。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
此题缺少条件,假定BC边长为c;则结果为AF^2=(16/9)*(a^2/8-b^2/16+c^2/2)
主要原因:题意只给定了AC和BD,说明平行四边形是不稳定的,然而AF的长度与边BC相关
主要原因:题意只给定了AC和BD,说明平行四边形是不稳定的,然而AF的长度与边BC相关
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询