AP微积分的问题:急!望高手指导!!!多谢啦,好答案一定加分~promise!
1.Therateatwhichapurificationprocesscanremovecontaminantsfromatankofwaterisproportion...
1. The rate at which a purification process can remove contaminants from a tank of water is proportional to the amount of contaminant remaining. If 20% of the contaminant can be removed during the first minute of the process and 98% must be removed to make the water safe, approximately how long will be decontamination process take? (Barron P606 45) Answer: 18min
2. The hypotenuse AB of a right triangle ABC is 5 feet, and one leg, AC, is decreasing at the rate of 2 feet per second. The rate, in aquare feet per second, at which the area is changing when AC=3 is ? Answer: -7/4 展开
2. The hypotenuse AB of a right triangle ABC is 5 feet, and one leg, AC, is decreasing at the rate of 2 feet per second. The rate, in aquare feet per second, at which the area is changing when AC=3 is ? Answer: -7/4 展开
1个回答
展开全部
1. 依题意,清除污染物的速率和残留污染物浓度成正比。设污染物浓度随时间t(分钟)变化的函数为s = s(t),则清除速度为v = v(t) = ks(t),k为常量。
,开始的浓度设为1单位,那么时刻t时,被清除掉的污染物为v(u)du积分从0到t,同时也是1-s(t)。故而这两者相等。这个式子两边对t求导,有
v(t)=-s'(t)。
而v(t) = ks(t),所以
s(t) + (1/k)s'(t) = 0
解得
s(t) = C exp(-kt)
而根据初始条件,s(0) = 1,于是C = 1,而第一分钟结束时,污染物剩余1-20% = 0.8,所以
s(1) = 0.8 = exp(-k),所以k = -ln(0.8)
鉴于我们最终只能余下2%的污染物,故而
0.02 = exp(-kt)
即
t = ln 0.02 / (-k) = ln 0.02 / ln 0.8 = 17.53min。
2. 设AC = b(t),则根据勾股定理,BC = sqrt(25 - b(t) * b(t))。由题意我们知道,b'(t) = -2英尺/秒。
设三角形的面积为S(t) =1/2 * b(t) sqrt(25 - b(t) * b(t))。对时间t求导,
S'(t) = 1/2 b'(t) ( sqrt(25 - b(t)^2) - b^2 / (sqrt(25 - b(t)^2)) )。
当b(t) = 3时,S'(t) = - (4 - 9 / 4) = - 7/4.
,开始的浓度设为1单位,那么时刻t时,被清除掉的污染物为v(u)du积分从0到t,同时也是1-s(t)。故而这两者相等。这个式子两边对t求导,有
v(t)=-s'(t)。
而v(t) = ks(t),所以
s(t) + (1/k)s'(t) = 0
解得
s(t) = C exp(-kt)
而根据初始条件,s(0) = 1,于是C = 1,而第一分钟结束时,污染物剩余1-20% = 0.8,所以
s(1) = 0.8 = exp(-k),所以k = -ln(0.8)
鉴于我们最终只能余下2%的污染物,故而
0.02 = exp(-kt)
即
t = ln 0.02 / (-k) = ln 0.02 / ln 0.8 = 17.53min。
2. 设AC = b(t),则根据勾股定理,BC = sqrt(25 - b(t) * b(t))。由题意我们知道,b'(t) = -2英尺/秒。
设三角形的面积为S(t) =1/2 * b(t) sqrt(25 - b(t) * b(t))。对时间t求导,
S'(t) = 1/2 b'(t) ( sqrt(25 - b(t)^2) - b^2 / (sqrt(25 - b(t)^2)) )。
当b(t) = 3时,S'(t) = - (4 - 9 / 4) = - 7/4.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询