如图1,在平面直角坐标系中,O是坐标原点,平行四边形ABCD的顶点A的坐标为(-2,0
如图1,在平面直角坐标系中,O是坐标原点,平行四边形ABCD的顶点A的坐标为(-2,0),点D的坐标为(0,2√3),点B在X轴的正半轴上,点E为线段AD的中点,过点E的...
如图1,在平面直角坐标系中,O是坐标原点,平行四边形ABCD的顶点A的坐标为 (-2,0),点D的坐标为(0,2√3),点B在X轴的正半轴上,点E为线段AD的中点,过点E的直线L与x轴交于点F,与射线DC交于点G。
(1)求∠DCB的度数;
(2)当点F的坐标为(-4,0)时,求点G的坐标;
(3)连结OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF',记直线EF'与射线DC的交点为H。
①如图2,当点G在点H的左侧时,求证:△DEG∽△DHE;
②若△EHG的面积为3√3,求点F的坐标。 展开
(1)求∠DCB的度数;
(2)当点F的坐标为(-4,0)时,求点G的坐标;
(3)连结OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF',记直线EF'与射线DC的交点为H。
①如图2,当点G在点H的左侧时,求证:△DEG∽△DHE;
②若△EHG的面积为3√3,求点F的坐标。 展开
2个回答
展开全部
解:(1)在直角△OAD中,∵tan∠OAD=OD:OA= 3,
∴∠A=60°,
∵四边形ABCD是平行四边形,
∴∠C=∠A=60°;
(2)①证明:∵A(-2,0),D(0,2 3),且E是AD的中点,
∴E(-1, 3),AE=DE=2,OE=OA=2,
∴△OAE是等边三角形,则∠AOE=∠AEO=60°;
根据轴对称的性质知:∠AOE=∠EOF′,故∠EOF′=∠AEO=60°,即OF′∥AE,
∴∠OF′E=∠DEH;
∵∠OF′E=∠OFE=∠DGE,
∴∠DGE=∠DEH,
又∵∠GDE=∠EDH,
∴△DGE∽△DEH.
②过点E作EM⊥直线CD于点M,
∵CD∥AB,
∴∠EDM=∠DAB=60°,
∴Em=DE•sin60°=2× 32= 3,
∵S△EGH= 12•GH•ME= 12•GH• 3=3 3,
∴GH=6;
∵△DHE∽△DEG,
∴ DEDG= DHDE即DE2=DG•DH,
当点H在点G的右侧时,设DG=x,DH=x+6,
∴4=x(x+6),
解得:x1=-3+ 13+2= 13-1,
∴点F的坐标为(- 13+1,0);
当点H在点G的左侧时,设DG=x,DH=x-6,
∴4=x(x-6),
解得:x1=3+ 13,x2=3- 13(舍),
∵△DEG≌△AEF,
∴AF=DG=3+ 13,
∵OF=AO+AF=3+ 13+2= 13+5,
∴点F的坐标为(- 13-5,0),
综上可知,点F的坐标有两个,分别是F1(- 13+1,0),F2(- 13-5,0).
对叭~~~
∴∠A=60°,
∵四边形ABCD是平行四边形,
∴∠C=∠A=60°;
(2)①证明:∵A(-2,0),D(0,2 3),且E是AD的中点,
∴E(-1, 3),AE=DE=2,OE=OA=2,
∴△OAE是等边三角形,则∠AOE=∠AEO=60°;
根据轴对称的性质知:∠AOE=∠EOF′,故∠EOF′=∠AEO=60°,即OF′∥AE,
∴∠OF′E=∠DEH;
∵∠OF′E=∠OFE=∠DGE,
∴∠DGE=∠DEH,
又∵∠GDE=∠EDH,
∴△DGE∽△DEH.
②过点E作EM⊥直线CD于点M,
∵CD∥AB,
∴∠EDM=∠DAB=60°,
∴Em=DE•sin60°=2× 32= 3,
∵S△EGH= 12•GH•ME= 12•GH• 3=3 3,
∴GH=6;
∵△DHE∽△DEG,
∴ DEDG= DHDE即DE2=DG•DH,
当点H在点G的右侧时,设DG=x,DH=x+6,
∴4=x(x+6),
解得:x1=-3+ 13+2= 13-1,
∴点F的坐标为(- 13+1,0);
当点H在点G的左侧时,设DG=x,DH=x-6,
∴4=x(x-6),
解得:x1=3+ 13,x2=3- 13(舍),
∵△DEG≌△AEF,
∴AF=DG=3+ 13,
∵OF=AO+AF=3+ 13+2= 13+5,
∴点F的坐标为(- 13-5,0),
综上可知,点F的坐标有两个,分别是F1(- 13+1,0),F2(- 13-5,0).
对叭~~~
长荣科机电
2024-10-27 广告
2024-10-27 广告
直角坐标机器人,作为深圳市长荣科机电设备有限公司的明星产品之一,以其高精度、高稳定性在自动化生产线上发挥着关键作用。该机器人采用直线电机或精密导轨驱动,能在电商平台Y、Z三个直角坐标轴上实现精准定位与运动控制,广泛应用于电子装配、包装、检测...
点击进入详情页
本回答由长荣科机电提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询