在锐角三角形ABC中,角A.B.C的对边分别为a.b.c已知sin(A-B)=cosC.求B
1个回答
2014-04-17
展开全部
解:∵△ABC是锐角三角形
∴有(1)C=π-(A+B)
(2)sinA+cosA>0
(3)若sinB=cosB,则B=π/4
∵sin(A-B)=cosC
==>sin(A-B)=cos[π-(A+B)]
==>sin(A-B)=-cos(A+B)
==>sinAcosB-cosAsinB=-cosAcosB+sinAsinB
==>sinAsinB+cosAsinB=sinAcosB+cosAcosB
==>sinB(sinA+cosA)=cosB(sinA+cosA)
==>sinB=cosB
∴B=π/4
∴有(1)C=π-(A+B)
(2)sinA+cosA>0
(3)若sinB=cosB,则B=π/4
∵sin(A-B)=cosC
==>sin(A-B)=cos[π-(A+B)]
==>sin(A-B)=-cos(A+B)
==>sinAcosB-cosAsinB=-cosAcosB+sinAsinB
==>sinAsinB+cosAsinB=sinAcosB+cosAcosB
==>sinB(sinA+cosA)=cosB(sinA+cosA)
==>sinB=cosB
∴B=π/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询